Solveeit Logo

Question

Question: If $\sin^{-1}(\sin\frac{7}{2}) + \cos^{-1}(\cos\frac{9}{2}) + \tan^{-1}(\tan\frac{11}{2}) + \cot^{-1...

If sin1(sin72)+cos1(cos92)+tan1(tan112)+cot1(cot132)=aπ+b\sin^{-1}(\sin\frac{7}{2}) + \cos^{-1}(\cos\frac{9}{2}) + \tan^{-1}(\tan\frac{11}{2}) + \cot^{-1}(\cot\frac{13}{2}) = a\pi + b, then (a+b)(a+b) equals

A

1

B

2

C

3

D

4

Answer

3

Explanation

Solution

Let E=sin1(sin72)+cos1(cos92)+tan1(tan112)+cot1(cot132)E = \sin^{-1}(\sin\frac{7}{2}) + \cos^{-1}(\cos\frac{9}{2}) + \tan^{-1}(\tan\frac{11}{2}) + \cot^{-1}(\cot\frac{13}{2}).

We need to evaluate each term using the properties of inverse trigonometric functions.

The relevant properties are:

sin1(sinx)=x\sin^{-1}(\sin x) = x if x[π2,π2]x \in [-\frac{\pi}{2}, \frac{\pi}{2}]

cos1(cosx)=x\cos^{-1}(\cos x) = x if x[0,π]x \in [0, \pi]

tan1(tanx)=x\tan^{-1}(\tan x) = x if x(π2,π2)x \in (-\frac{\pi}{2}, \frac{\pi}{2})

cot1(cotx)=x\cot^{-1}(\cot x) = x if x(0,π)x \in (0, \pi)

We use the approximation π3.1416\pi \approx 3.1416. π21.5708\frac{\pi}{2} \approx 1.5708, π3.1416\pi \approx 3.1416, 3π24.7124\frac{3\pi}{2} \approx 4.7124, 2π6.28322\pi \approx 6.2832.

Term 1: sin1(sin72)\sin^{-1}(\sin\frac{7}{2})

72=3.5\frac{7}{2} = 3.5. The range of sin1(sinx)\sin^{-1}(\sin x) is [π2,π2][-\frac{\pi}{2}, \frac{\pi}{2}].

Since π2<72<3π2\frac{\pi}{2} < \frac{7}{2} < \frac{3\pi}{2} (i.e., 1.5708<3.5<4.71241.5708 < 3.5 < 4.7124), we use the formula sin1(sinx)=πx\sin^{-1}(\sin x) = \pi - x.

So, sin1(sin72)=π72\sin^{-1}(\sin\frac{7}{2}) = \pi - \frac{7}{2}.

Check if π72[π2,π2]\pi - \frac{7}{2} \in [-\frac{\pi}{2}, \frac{\pi}{2}].

π723.14163.5=0.3584\pi - \frac{7}{2} \approx 3.1416 - 3.5 = -0.3584.

Since 1.57080.35841.5708-1.5708 \le -0.3584 \le 1.5708, this is correct.

Term 2: cos1(cos92)\cos^{-1}(\cos\frac{9}{2})

92=4.5\frac{9}{2} = 4.5. The range of cos1(cosx)\cos^{-1}(\cos x) is [0,π][0, \pi].

Since π<92<2π\pi < \frac{9}{2} < 2\pi (i.e., 3.1416<4.5<6.28323.1416 < 4.5 < 6.2832), we use the formula cos1(cosx)=2πx\cos^{-1}(\cos x) = 2\pi - x.

So, cos1(cos92)=2π92\cos^{-1}(\cos\frac{9}{2}) = 2\pi - \frac{9}{2}.

Check if 2π92[0,π]2\pi - \frac{9}{2} \in [0, \pi].

2π926.28324.5=1.78322\pi - \frac{9}{2} \approx 6.2832 - 4.5 = 1.7832.

Since 01.78323.14160 \le 1.7832 \le 3.1416, this is correct.

Term 3: tan1(tan112)\tan^{-1}(\tan\frac{11}{2})

112=5.5\frac{11}{2} = 5.5. The range of tan1(tanx)\tan^{-1}(\tan x) is (π2,π2)(-\frac{\pi}{2}, \frac{\pi}{2}).

Since 3π2<112<5π2\frac{3\pi}{2} < \frac{11}{2} < \frac{5\pi}{2} (i.e., 4.7124<5.5<7.85404.7124 < 5.5 < 7.8540), we need to subtract 2π2\pi from 112\frac{11}{2}.

1122π\frac{11}{2} - 2\pi.

Check if 1122π(π2,π2)\frac{11}{2} - 2\pi \in (-\frac{\pi}{2}, \frac{\pi}{2}).

1122π5.56.2832=0.7832\frac{11}{2} - 2\pi \approx 5.5 - 6.2832 = -0.7832.

Since 1.5708<0.7832<1.5708-1.5708 < -0.7832 < 1.5708, this is correct.

So, tan1(tan112)=1122π\tan^{-1}(\tan\frac{11}{2}) = \frac{11}{2} - 2\pi.

Term 4: cot1(cot132)\cot^{-1}(\cot\frac{13}{2})

132=6.5\frac{13}{2} = 6.5. The range of cot1(cotx)\cot^{-1}(\cot x) is (0,π)(0, \pi).

Since 2π<132<3π2\pi < \frac{13}{2} < 3\pi (i.e., 6.2832<6.5<9.42486.2832 < 6.5 < 9.4248), we need to subtract 2π2\pi from 132\frac{13}{2}.

1322π\frac{13}{2} - 2\pi.

Check if 1322π(0,π)\frac{13}{2} - 2\pi \in (0, \pi).

1322π6.56.2832=0.2168\frac{13}{2} - 2\pi \approx 6.5 - 6.2832 = 0.2168.

Since 0<0.2168<3.14160 < 0.2168 < 3.1416, this is correct.

So, cot1(cot132)=1322π\cot^{-1}(\cot\frac{13}{2}) = \frac{13}{2} - 2\pi.

Now, sum the terms:

E=(π72)+(2π92)+(1122π)+(1322π)E = (\pi - \frac{7}{2}) + (2\pi - \frac{9}{2}) + (\frac{11}{2} - 2\pi) + (\frac{13}{2} - 2\pi)

E=(π+2π2π2π)+(7292+112+132)E = (\pi + 2\pi - 2\pi - 2\pi) + (-\frac{7}{2} - \frac{9}{2} + \frac{11}{2} + \frac{13}{2})

E=(3π4π)+(79+11+132)E = (3\pi - 4\pi) + (\frac{-7 - 9 + 11 + 13}{2})

E=π+(16+242)E = -\pi + (\frac{-16 + 24}{2})

E=π+82E = -\pi + \frac{8}{2}

E=π+4E = -\pi + 4

E=4πE = 4 - \pi

The given form is aπ+ba\pi + b.

Comparing 4π4 - \pi with aπ+ba\pi + b, we get a=1a = -1 and b=4b = 4.

We need to find (a+b)(a+b).

a+b=1+4=3a+b = -1 + 4 = 3.