Solveeit Logo

Question

Question: If $\sin^{-1}(\sin 4) + \cos^{-1}(\cos 8) + \tan^{-1}(\tan 6) + \cot^{-1}(\cot 10) = a + b\pi$ then ...

If sin1(sin4)+cos1(cos8)+tan1(tan6)+cot1(cot10)=a+bπ\sin^{-1}(\sin 4) + \cos^{-1}(\cos 8) + \tan^{-1}(\tan 6) + \cot^{-1}(\cot 10) = a + b\pi then (a + b) equals

A

26

B

14

C

12

D

10

Answer

14

Explanation

Solution

The problem requires evaluating the sum of inverse trigonometric functions with arguments outside their principal ranges. We will use the properties of inverse trigonometric functions to find the equivalent values within the principal ranges. The principal ranges are:

sin1x[π2,π2]\sin^{-1}x \in [-\frac{\pi}{2}, \frac{\pi}{2}]

cos1x[0,π]\cos^{-1}x \in [0, \pi]

tan1x(π2,π2)\tan^{-1}x \in (-\frac{\pi}{2}, \frac{\pi}{2})

cot1x(0,π)\cot^{-1}x \in (0, \pi)

We use the approximation π3.1416\pi \approx 3.1416.

π/21.5708\pi/2 \approx 1.5708

π3.1416\pi \approx 3.1416

3π/24.71243\pi/2 \approx 4.7124

2π6.28322\pi \approx 6.2832

5π/27.85405\pi/2 \approx 7.8540

3π9.42483\pi \approx 9.4248

7π/210.99567\pi/2 \approx 10.9956

  1. sin1(sin4)\sin^{-1}(\sin 4):

The argument is 4. The principal range for sin1\sin^{-1} is [π/2,π/2][-\pi/2, \pi/2].

Since π<4<3π/2\pi < 4 < 3\pi/2 (i.e., 3.1416<4<4.71243.1416 < 4 < 4.7124), we use the property sin1(sinx)=πx\sin^{-1}(\sin x) = \pi - x for x[π/2,3π/2]x \in [\pi/2, 3\pi/2].

So, sin1(sin4)=π4\sin^{-1}(\sin 4) = \pi - 4.

Check if π4\pi - 4 is in [π/2,π/2][-\pi/2, \pi/2]: π43.14164=0.8584\pi - 4 \approx 3.1416 - 4 = -0.8584.

Since 1.57080.85841.5708-1.5708 \le -0.8584 \le 1.5708, the value is correct.

  1. cos1(cos8)\cos^{-1}(\cos 8):

The argument is 8. The principal range for cos1\cos^{-1} is [0,π][0, \pi].

Since 2π<8<3π2\pi < 8 < 3\pi (i.e., 6.2832<8<9.42486.2832 < 8 < 9.4248), we use the property cos1(cosx)=x2π\cos^{-1}(\cos x) = x - 2\pi for x[2π,3π]x \in [2\pi, 3\pi].

So, cos1(cos8)=82π\cos^{-1}(\cos 8) = 8 - 2\pi.

Check if 82π8 - 2\pi is in [0,π][0, \pi]: 82π86.2832=1.71688 - 2\pi \approx 8 - 6.2832 = 1.7168.

Since 01.71683.14160 \le 1.7168 \le 3.1416, the value is correct.

  1. tan1(tan6)\tan^{-1}(\tan 6):

The argument is 6. The principal range for tan1\tan^{-1} is (π/2,π/2)(-\pi/2, \pi/2).

Since 3π/2<6<2π3\pi/2 < 6 < 2\pi (i.e., 4.7124<6<6.28324.7124 < 6 < 6.2832), we use the property tan1(tanx)=x2π\tan^{-1}(\tan x) = x - 2\pi for x(3π/2,5π/2)x \in (3\pi/2, 5\pi/2).

So, tan1(tan6)=62π\tan^{-1}(\tan 6) = 6 - 2\pi.

Check if 62π6 - 2\pi is in (π/2,π/2)(-\pi/2, \pi/2): 62π66.2832=0.28326 - 2\pi \approx 6 - 6.2832 = -0.2832.

Since 1.5708<0.2832<1.5708-1.5708 < -0.2832 < 1.5708, the value is correct.

  1. cot1(cot10)\cot^{-1}(\cot 10):

The argument is 10. The principal range for cot1\cot^{-1} is (0,π)(0, \pi).

Since 3π<10<7π/23\pi < 10 < 7\pi/2 (i.e., 9.4248<10<10.99569.4248 < 10 < 10.9956), we use the property cot1(cotx)=x3π\cot^{-1}(\cot x) = x - 3\pi for x(3π,4π)x \in (3\pi, 4\pi).

So, cot1(cot10)=103π\cot^{-1}(\cot 10) = 10 - 3\pi.

Check if 103π10 - 3\pi is in (0,π)(0, \pi): 103π109.4248=0.575210 - 3\pi \approx 10 - 9.4248 = 0.5752.

Since 0<0.5752<3.14160 < 0.5752 < 3.1416, the value is correct.

Now, sum the terms:

sin1(sin4)+cos1(cos8)+tan1(tan6)+cot1(cot10)=(π4)+(82π)+(62π)+(103π)\sin^{-1}(\sin 4) + \cos^{-1}(\cos 8) + \tan^{-1}(\tan 6) + \cot^{-1}(\cot 10) = (\pi - 4) + (8 - 2\pi) + (6 - 2\pi) + (10 - 3\pi)

=(π2π2π3π)+(4+8+6+10)= (\pi - 2\pi - 2\pi - 3\pi) + (-4 + 8 + 6 + 10)

=(1223)π+(4+8+6+10)= (1 - 2 - 2 - 3)\pi + (-4 + 8 + 6 + 10)

=6π+(4+16)= -6\pi + (4 + 16)

=6π+20= -6\pi + 20

=206π= 20 - 6\pi

We are given that the sum equals a+bπa + b\pi.

Comparing 206π20 - 6\pi with a+bπa + b\pi, we have a=20a = 20 and b=6b = -6.

We need to find the value of a+ba+b.

a+b=20+(6)=206=14a+b = 20 + (-6) = 20 - 6 = 14.

The final answer is 14\boxed{14}.

Explanation of the solution:

  1. Evaluate each term sin1(sin4)\sin^{-1}(\sin 4), cos1(cos8)\cos^{-1}(\cos 8), tan1(tan6)\tan^{-1}(\tan 6), cot1(cot10)\cot^{-1}(\cot 10) by finding the equivalent angle within the principal range of the respective inverse trigonometric function.
  2. For sin1(sin4)\sin^{-1}(\sin 4), since π<4<3π/2\pi < 4 < 3\pi/2, sin1(sin4)=π4\sin^{-1}(\sin 4) = \pi - 4.
  3. For cos1(cos8)\cos^{-1}(\cos 8), since 2π<8<3π2\pi < 8 < 3\pi, cos1(cos8)=82π\cos^{-1}(\cos 8) = 8 - 2\pi.
  4. For tan1(tan6)\tan^{-1}(\tan 6), since 3π/2<6<2π3\pi/2 < 6 < 2\pi, tan1(tan6)=62π\tan^{-1}(\tan 6) = 6 - 2\pi.
  5. For cot1(cot10)\cot^{-1}(\cot 10), since 3π<10<4π3\pi < 10 < 4\pi, cot1(cot10)=103π\cot^{-1}(\cot 10) = 10 - 3\pi.
  6. Sum the evaluated terms: (π4)+(82π)+(62π)+(103π)=(1223)π+(4+8+6+10)=6π+20=206π(\pi - 4) + (8 - 2\pi) + (6 - 2\pi) + (10 - 3\pi) = (1 - 2 - 2 - 3)\pi + (-4 + 8 + 6 + 10) = -6\pi + 20 = 20 - 6\pi.
  7. Compare the result with a+bπa + b\pi to find a=20a=20 and b=6b=-6.
  8. Calculate a+b=20+(6)=14a+b = 20 + (-6) = 14.

The final answer is 14\boxed{14}.