Solveeit Logo

Question

Question: If $\sin^{-1}\frac{\alpha}{17} + \cos^{-1}\frac{4}{5} - \tan^{-1}\frac{77}{36} = 0, 0 < \alpha < 13$...

If sin1α17+cos145tan17736=0,0<α<13\sin^{-1}\frac{\alpha}{17} + \cos^{-1}\frac{4}{5} - \tan^{-1}\frac{77}{36} = 0, 0 < \alpha < 13, and AA is set containing all the natural numbers satisfying the inequality cot1(n212n+33)>sin(cos11π216)\cot^{-1}(n^2 - 12n + 33) > \sin\left(\cos^{-1}\sqrt{1 - \frac{\pi^2}{16}}\right), then which of the following statement(s) is(are) correct? (consider only the principal values of the inverse trigonometric functions)

A

Arithmetic mean of all the values in AA is smaller than the value of α\alpha

B

The smallest element in AA is 5

C

The sum of all the elements in AA is 21

D

The largest element in AA is 8

Answer

A, B

Explanation

Solution

Here's how to solve this problem:

Part 1: Finding the value of α\alpha

The given equation is sin1α17+cos145tan17736=0\sin^{-1}\frac{\alpha}{17} + \cos^{-1}\frac{4}{5} - \tan^{-1}\frac{77}{36} = 0. We rewrite this as:

sin1α17+cos145=tan17736\sin^{-1}\frac{\alpha}{17} + \cos^{-1}\frac{4}{5} = \tan^{-1}\frac{77}{36}

Let X=sin1α17X = \sin^{-1}\frac{\alpha}{17}, Y=cos145Y = \cos^{-1}\frac{4}{5}, and Z=tan17736Z = \tan^{-1}\frac{77}{36}. The equation becomes X+Y=ZX + Y = Z.

From X=sin1α17X = \sin^{-1}\frac{\alpha}{17}: Since 0<α<130 < \alpha < 13, we have 0<α17<1317<10 < \frac{\alpha}{17} < \frac{13}{17} < 1. Thus, XX is in the first quadrant, and:

sinX=α17\sin X = \frac{\alpha}{17} cosX=1sin2X=1(α17)2=289α217\cos X = \sqrt{1 - \sin^2 X} = \sqrt{1 - \left(\frac{\alpha}{17}\right)^2} = \frac{\sqrt{289 - \alpha^2}}{17}

From Y=cos145Y = \cos^{-1}\frac{4}{5}: Since 45>0\frac{4}{5} > 0, YY is in the first quadrant, and:

cosY=45\cos Y = \frac{4}{5} sinY=1cos2Y=1(45)2=11625=925=35\sin Y = \sqrt{1 - \cos^2 Y} = \sqrt{1 - \left(\frac{4}{5}\right)^2} = \sqrt{1 - \frac{16}{25}} = \sqrt{\frac{9}{25}} = \frac{3}{5}

From Z=tan17736Z = \tan^{-1}\frac{77}{36}: Since 7736>0\frac{77}{36} > 0, ZZ is in the first quadrant. We can find sinZ\sin Z and cosZ\cos Z. Construct a right triangle with opposite side 77 and adjacent side 36. The hypotenuse will be 772+362=5929+1296=7225=85\sqrt{77^2 + 36^2} = \sqrt{5929 + 1296} = \sqrt{7225} = 85.

sinZ=7785\sin Z = \frac{77}{85} cosZ=3685\cos Z = \frac{36}{85}

Now, take the sine of both sides of X+Y=ZX+Y=Z:

sin(X+Y)=sinZ\sin(X+Y) = \sin Z

Using the sum formula for sine, sinXcosY+cosXsinY=sinZ\sin X \cos Y + \cos X \sin Y = \sin Z:

(α17)(45)+(289α217)(35)=7785\left(\frac{\alpha}{17}\right)\left(\frac{4}{5}\right) + \left(\frac{\sqrt{289 - \alpha^2}}{17}\right)\left(\frac{3}{5}\right) = \frac{77}{85} 4α85+3289α285=7785\frac{4\alpha}{85} + \frac{3\sqrt{289 - \alpha^2}}{85} = \frac{77}{85}

Multiply by 85:

4α+3289α2=774\alpha + 3\sqrt{289 - \alpha^2} = 77

Isolate the square root term:

3289α2=774α3\sqrt{289 - \alpha^2} = 77 - 4\alpha

For the square root to be well-defined and equal to a non-negative value, we must have 774α077 - 4\alpha \ge 0, which implies 4α774\alpha \le 77, or α774=19.25\alpha \le \frac{77}{4} = 19.25.

Square both sides of the equation:

9(289α2)=(774α)29(289 - \alpha^2) = (77 - 4\alpha)^2 26019α2=5929616α+16α22601 - 9\alpha^2 = 5929 - 616\alpha + 16\alpha^2

Rearrange into a quadratic equation:

25α2616α+3328=025\alpha^2 - 616\alpha + 3328 = 0

Solve using the quadratic formula α=b±b24ac2a\alpha = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}:

α=616±(616)24(25)(3328)2(25)\alpha = \frac{616 \pm \sqrt{(-616)^2 - 4(25)(3328)}}{2(25)} α=616±37945633280050\alpha = \frac{616 \pm \sqrt{379456 - 332800}}{50} α=616±4665650\alpha = \frac{616 \pm \sqrt{46656}}{50}

We find that 46656=216\sqrt{46656} = 216.

α=616±21650\alpha = \frac{616 \pm 216}{50}

Two possible values for α\alpha:

α1=616+21650=83250=16.64\alpha_1 = \frac{616 + 216}{50} = \frac{832}{50} = 16.64 α2=61621650=40050=8\alpha_2 = \frac{616 - 216}{50} = \frac{400}{50} = 8

The problem states 0<α<130 < \alpha < 13. α1=16.64\alpha_1 = 16.64 does not satisfy this condition. α2=8\alpha_2 = 8 satisfies 0<8<130 < 8 < 13. Also, for α=8\alpha=8, 774(8)=7732=45077 - 4(8) = 77 - 32 = 45 \ge 0, so it's a valid solution. Thus, α=8\alpha = 8.

Part 2: Finding the set A

The inequality is cot1(n212n+33)>sin(cos11π216)\cot^{-1}(n^2 - 12n + 33) > \sin\left(\cos^{-1}\sqrt{1 - \frac{\pi^2}{16}}\right).

First, evaluate the Right Hand Side (RHS): Let K=cos11π216K = \cos^{-1}\sqrt{1 - \frac{\pi^2}{16}}.

For KK to be defined, we need 11π2161-1 \le \sqrt{1 - \frac{\pi^2}{16}} \le 1. Since π3.14\pi \approx 3.14, π29.86\pi^2 \approx 9.86. 1π21619.8616=10.616=0.3841 - \frac{\pi^2}{16} \approx 1 - \frac{9.86}{16} = 1 - 0.616 = 0.384. Since 0<0.384<10 < 0.384 < 1, 1π216\sqrt{1 - \frac{\pi^2}{16}} is real and between 0 and 1, so KK is well-defined and K[0,π2]K \in [0, \frac{\pi}{2}].

cosK=1π216\cos K = \sqrt{1 - \frac{\pi^2}{16}}. We need to find sinK\sin K:

sinK=1cos2K=1(1π216)=π216=π4\sin K = \sqrt{1 - \cos^2 K} = \sqrt{1 - \left(1 - \frac{\pi^2}{16}\right)} = \sqrt{\frac{\pi^2}{16}} = \frac{\pi}{4}

Since K[0,π2]K \in [0, \frac{\pi}{2}], sinK0\sin K \ge 0, so we take the positive root. So, the RHS of the inequality is π4\frac{\pi}{4}.

The inequality becomes:

cot1(n212n+33)>π4\cot^{-1}(n^2 - 12n + 33) > \frac{\pi}{4}

The function cot1x\cot^{-1}x is a strictly decreasing function. Therefore, if cot1(f(n))>cot1(1)\cot^{-1}(f(n)) > \cot^{-1}(1) (since cot1(1)=π4\cot^{-1}(1) = \frac{\pi}{4}), then f(n)<1f(n) < 1.

n212n+33<1n^2 - 12n + 33 < 1 n212n+32<0n^2 - 12n + 32 < 0

Factor the quadratic expression:

(n4)(n8)<0(n-4)(n-8) < 0

This inequality holds when nn is between the roots 4 and 8.

4<n<84 < n < 8

The set AA contains all natural numbers satisfying this inequality. Natural numbers are {1,2,3,}\{1, 2, 3, \dots\}. The natural numbers nn such that 4<n<84 < n < 8 are 5,6,75, 6, 7. So, A={5,6,7}A = \{5, 6, 7\}.

Part 3: Evaluating the statements

We have α=8\alpha = 8 and A={5,6,7}A = \{5, 6, 7\}.

A. Arithmetic mean of all the values in AA is smaller than the value of α\alpha. Arithmetic mean of A=5+6+73=183=6A = \frac{5+6+7}{3} = \frac{18}{3} = 6. Is 6<86 < 8? Yes. Statement A is correct.

B. The smallest element in AA is 5. The elements of AA are {5,6,7}\{5, 6, 7\}. The smallest element is 5. Statement B is correct.

C. The sum of all the elements in AA is 21. Sum of elements in A=5+6+7=18A = 5+6+7 = 18. The statement says the sum is 21, which is incorrect. Statement C is incorrect.

D. The largest element in AA is 8. The elements of AA are {5,6,7}\{5, 6, 7\}. The largest element is 7. The statement says the largest element is 8, which is incorrect. Statement D is incorrect.

Therefore, statements A and B are correct.