Solveeit Logo

Question

Mathematics Question on Trigonometric Functions

If sin(120A)=sin(120B)\sin(120 - A)= \sin(120 - B) and 0<A,B<π0< A, B < \pi then all values of A,BA, B are given by.

A

A+B=π3A + B = \frac{\pi}{3}

B

ABA - B or A+B=π3A+ B = \frac{\pi}{3}

C

A=BA = B

D

A+B=0A + B = 0

Answer

ABA - B or A+B=π3A+ B = \frac{\pi}{3}

Explanation

Solution

Given trigonometrical equation is sin(120A)=sin(120B)\sin(120 -A)= \sin(120 - B)
Since sine is positive in II quadrant
\therefore either 120A=120B120 - A = 120 - B
A=B\Rightarrow \, \, A = B
or 120A=180(120B) 120 - A = 180 -(120 -B)
120A=60+B\Rightarrow \, \, 120 -A = 60 + B
A+B=π3\Rightarrow \, \, A+ B = \frac{\pi}{3}