Question
Mathematics Question on Inverse Trigonometric Functions
If sin−1x+sin−1y+sin−1z=π , then x4+y4+z4+4x2y2z2=K(x2y2+y2z2+z2x2) , where K =
A
1
B
2
C
4
D
none of these.
Answer
2
Explanation
Solution
Since sin−1x+sin−1y=π−sin−1z=π ∴sin−1x+sin−1y=π−sin−1z ⇒sin−1[x1−y2+y1−x2] =π−sin−1(z) ⇒x1−y2+y1−x2 =sin(π−sin−1(z)) =sin(sin−1z)=z ⇒x2(1−y2)=z2+y2(1−x2)−2zy1−x2 ⇒(x2+y2−z2)=4y2z2(1−x2) ⇒x4+y4+z4−2x2y2−2x2z2+2y2z2 =4y2z2−4x2y2z2 ⇒x4+y4+z4+4x2y2z2 =2(x2y2+y2z2+z2x2) ∴K=2