Solveeit Logo

Question

Mathematics Question on Trigonometric Equations

If sin1x+sin1y+sin1z=3π2\sin ^{-1} x+\sin ^{-1} y+\sin ^{-1} z=\frac{3 \pi}{2}, then the value of x9+y9+z91x9y9z9x^{9}+y^{9}+z^{9}-\frac{1}{x^{9} y^{9} z^{9}} is equal to

A

0

B

1

C

2

D

3

Answer

2

Explanation

Solution

We know that sin1xπ2\left|\sin ^{-1} x\right| \leq \frac{\pi}{2}
Hence, from the given relation we observe that each of
sin1x,sin1y\sin ^{-1} x, \sin ^{-1} y and sin1z\sin ^{-1} z will be π2\frac{\pi}{2}
so that x=y=z=sinπ2=1x=y=z=\sin \frac{\pi}{2}=1
x9+y9+z91x9y9z9\therefore x^{9}+y^{9}+z^{9}-\frac{1}{x^{9} y^{9} z^{9}}
=(1)9+(1)9+(1)91(1)9(1)9(1)9=(1)^{9}+(1)^{9}+(1)^{9}-\frac{1}{(1)^{9}(1)^{9}(1)^{9}}
=1+1+111×1×1=1+1+1-\frac{1}{1 \times 1 \times 1}
=31=2=3-1=2