Solveeit Logo

Question

Mathematics Question on Inverse Trigonometric Functions

If sin1x+sin1y+sin1z=3π2\sin^{-1} x + \sin^{-1}y + \sin^{-1} z = \frac{3 \pi}{2} then the value of x100+y100+z1003x101+y101+z101x^{100} + y^{100} + z^{100} - \frac{ 3}{x^{101} + y^{101} + z^{101}} is

A

0

B

1

C

2

D

3

Answer

2

Explanation

Solution

We have sin1x+sin1y+sin1z=3π2 \sin^{-1} x + \sin^{-1}y + \sin^{-1}z = \frac{3\pi}{2} and sin1xπ2\sin^{-1} x \le \frac{\pi}{2} it is possible only when sin1x=π2x=1\sin^{-1} x = \frac{\pi}{2} \Rightarrow x = 1 sin1y=π2y=1;\sin^{-1} y = \frac{\pi}{2} \Rightarrow y =1 ; sin1z=π2z=1\sin^{-1} z = \frac{\pi}{2} \Rightarrow z = 1 x100+y100+z1003x101+y101+z101\therefore x^{100} + y^{100} + z^{100} - \frac{ 3}{x^{101} + y^{101} + z^{101}} =1+1+133= 1 + 1 + 1 - \frac{3}{3} =31= 3 - 1 =2= 2