Solveeit Logo

Question

Question: If \({{\sin }^{-1}}x+{{\sin }^{-1}}y+{{\sin }^{-1}}z=\dfrac{\pi }{2}\), then the value of \({{x}^{2}...

If sin1x+sin1y+sin1z=π2{{\sin }^{-1}}x+{{\sin }^{-1}}y+{{\sin }^{-1}}z=\dfrac{\pi }{2}, then the value of x2+y2+z2+2xyz{{x}^{2}}+{{y}^{2}}+{{z}^{2}}+2xyz is
A. 0
B. 1
C. 2
D. 3

Explanation

Solution

We first take the inverse forms in simple angle form. Then we take ratio cos and expand the series. The corresponding ratio gives the algebraic relation between x,y,zx,y,z. We take the square and find the value of x2+y2+z2+2xyz{{x}^{2}}+{{y}^{2}}+{{z}^{2}}+2xyz.

Complete step by step answer:
The given equation forms sin1x+sin1y=π2sin1z{{\sin }^{-1}}x+{{\sin }^{-1}}y=\dfrac{\pi }{2}-{{\sin }^{-1}}z.
We assume sin1x=a;sin1y=b;sin1z=c{{\sin }^{-1}}x=a;{{\sin }^{-1}}y=b;{{\sin }^{-1}}z=c. Therefore, a+b=π2ca+b=\dfrac{\pi }{2}-c.We can also write
sin1m=cos11m2 sin1n=cos11n2{{\sin }^{-1}}m={{\cos }^{-1}}\sqrt{1-{{m}^{2}}}\\\ \Rightarrow {{\sin }^{-1}}n={{\cos }^{-1}}\sqrt{1-{{n}^{2}}}.
We take the trigonometric ratio of cos for the relation a+b=π2ca+b=\dfrac{\pi }{2}-c.
cos(a+b)=cos(π2c)=sinc\cos \left( a+b \right)=\cos \left( \dfrac{\pi }{2}-c \right)=\sin c.
From sin1x=cos11x2=a;sin1y=cos11y2=b;sin1z=c{{\sin }^{-1}}x={{\cos }^{-1}}\sqrt{1-{{x}^{2}}}=a;{{\sin }^{-1}}y={{\cos }^{-1}}\sqrt{1-{{y}^{2}}}=b;{{\sin }^{-1}}z=c, we get
sina=x,cos(a)=1x2;sin(b)=1y2;sin(c)=z\sin a=x,\cos \left( a \right)=\sqrt{1-{{x}^{2}}};\sin \left( b \right)=\sqrt{1-{{y}^{2}}};\sin \left( c \right)=z.

We now use the formulas of cos(m+n)=cosmcosnsinmsinn\cos \left( m+n \right)=\cos m\cos n-\sin m\sin n.Therefore, we get

\Rightarrow \cos a\cos b-\sin a\sin b=\sin c \\\ \Rightarrow \sqrt{1-{{x}^{2}}}\sqrt{1-{{y}^{2}}}-xy=z \\\ \Rightarrow z+xy=\sqrt{\left( 1-{{x}^{2}} \right)\left( 1-{{y}^{2}} \right)} \\\ $$ We now take square both sides to get $$z+xy=\sqrt{\left( 1-{{x}^{2}} \right)\left( 1-{{y}^{2}} \right)} \\\ \Rightarrow {{\left( z+xy \right)}^{2}}=\left( 1-{{x}^{2}} \right)\left( 1-{{y}^{2}} \right) \\\ \Rightarrow {{z}^{2}}+{{x}^{2}}{{y}^{2}}+2xyz=1-{{x}^{2}}-{{y}^{2}}+{{x}^{2}}{{y}^{2}} \\\ \therefore {{x}^{2}}+{{y}^{2}}+{{z}^{2}}+2xyz=1 \\\ $$ **Hence, the correct option is B.** **Note:** We need to be careful about the domain of the inverse trigonometric ratios. Although for elementary knowledge the principal domain is enough to solve the problem. But if mentioned to find the general solution then the domain changes to $-\infty \le x\le \infty $. In that case we have to use the formula $x=n\pi \pm a$ for $\cos \left( x \right)=\cos a$ where $0\le a\le \pi $.