Question
Mathematics Question on Inverse Trigonometric Functions
If sin−1x+sin−1y=2π , then x2 is equal to
A
1−y2
B
y2
C
0
D
1−y
Answer
1−y2
Explanation
Solution
We have, sin−1x+sin−1y=2π
⇒sin−1x=2π−sin−1y
⇒sin−1x=cos−1y
[∵sin−1x+cos−1x=2π]
⇒sin−1x=sin−1(1−y2)
⇒x=1−y2
⇒x2=1−y2