Solveeit Logo

Question

Question: If \({\sin ^{ - 1}}x + {\sin ^{ - 1}}y = \dfrac{\pi }{2}\), then prove that \({\sin ^{ - 1}}x = {\co...

If sin1x+sin1y=π2{\sin ^{ - 1}}x + {\sin ^{ - 1}}y = \dfrac{\pi }{2}, then prove that sin1x=cos1y{\sin ^{ - 1}}x = {\cos ^{ - 1}}y

Explanation

Solution

Here we have given sin1x+sin1y=π2{\sin ^{ - 1}}x + {\sin ^{ - 1}}y = \dfrac{\pi }{2} and we have to prove sin1x=cos1y{\sin ^{ - 1}}x = {\cos ^{ - 1}}y we can see that LHS of our proof is already in our question so we have to only get RHS using properties of inverse trigonometric functions like sin1θ+cos1θ=π2{\sin ^{ - 1}}\theta + {\cos ^{ - 1}}\theta = \dfrac{\pi }{2} , using this formulae we will proceed in this question.

Complete step-by-step answer:
Given
sin1x+sin1y=π2{\sin ^{ - 1}}x + {\sin ^{ - 1}}y = \dfrac{\pi }{2} ---- eq.1
From inverse trigonometric relations,
we know
sin1θ+cos1θ=π2 sin1θ=π2cos1θ  \Rightarrow {\sin ^{ - 1}}\theta + {\cos ^{ - 1}}\theta = \dfrac{\pi }{2} \\\ \Rightarrow {\sin ^{ - 1}}\theta = \dfrac{\pi }{2} - {\cos ^{ - 1}}\theta \\\
Similarly,{\text{Similarly,}}on replacing θ by y\theta {\text{ by }}y
We get
sin1y=π2cos1y ——-eq.2\Rightarrow {\sin ^{ - 1}}y = \dfrac{\pi }{2} - {\cos ^{ - 1}}y{\text{ -------eq}}{\text{.2}}
Since we need a relation betweensin1x and cos1y{\sin ^{ - 1}}x{\text{ and }}{\cos ^{ - 1}}y . So we need to change the sin1y into cos1y{\sin ^{ - 1}}y{\text{ into }}{\cos ^{ - 1}}y.
Then, we can rewrite eq.1 as
sin1x+(π2cos1y)=π2  sin1x+π2cos1y=π2  \Rightarrow {\sin ^{ - 1}}x + (\dfrac{\pi }{2} - {\cos ^{ - 1}}y) = \dfrac{\pi }{2}{\text{ }} \\\ \Rightarrow {\sin ^{ - 1}}x + \dfrac{\pi }{2} - {\cos ^{ - 1}}y = \dfrac{\pi }{2} \\\
( using eq.2 )
Now on cancel out we get,
sin1xcos1y=0\Rightarrow {\sin ^{ - 1}}x - {\cos ^{ - 1}}y = 0
And that’s why
sin1x=cos1y{\sin ^{ - 1}}x = {\cos ^{ - 1}}y
Hence Proved

Note: Whenever you get this type of problem the key concept of solving the problem that you have to learn inverse trigonometric relations and their applications too like in this problem we require the relation sin1θ+cos1θ=π2{\sin ^{ - 1}}\theta + {\cos ^{ - 1}}\theta = \dfrac{\pi }{2}. So to solve this type of question inverse trigonometric relations must be remembered.