Solveeit Logo

Question

Question: If \[{\sin ^{ - 1}}x + {\sin ^{ - 1}}y = \dfrac{{2\pi }}{3}\], then \[{\cos ^{ - 1}}x + {\cos ^{ - 1...

If sin1x+sin1y=2π3{\sin ^{ - 1}}x + {\sin ^{ - 1}}y = \dfrac{{2\pi }}{3}, then cos1x+cos1y{\cos ^{ - 1}}x + {\cos ^{ - 1}}y is equal to
(a) 2π3\dfrac{{2\pi }}{3}
(b) π3\dfrac{\pi }{3}
(c) π6\dfrac{\pi }{6}
(d) π\pi

Explanation

Solution

Here, we need to find the value of the expression cos1x+cos1y{\cos ^{ - 1}}x + {\cos ^{ - 1}}y. We will use the formula for sum of the sine inverse of an angle and the cosine inverse of an angle. Then, we will rewrite the given equation. Finally, we will simplify the equation to find the value of the expression cos1x+cos1y{\cos ^{ - 1}}x + {\cos ^{ - 1}}y.
Formula Used: The sum of the sine inverse of an angle θ\theta and the cosine inverse of the angle θ\theta is given by sin1θ+cos1θ=π2{\sin ^{ - 1}}\theta + {\cos ^{ - 1}}\theta = \dfrac{\pi }{2}.

Complete step by step solution:
We will use the formula for sum of the sine inverse of an angle and the cosine inverse of an angle.
The sum of the sine inverse of an angle θ\theta and the cosine inverse of the angle θ\theta is given by sin1θ+cos1θ=π2{\sin ^{ - 1}}\theta + {\cos ^{ - 1}}\theta = \dfrac{\pi }{2}.
Substituting θ=x\theta = x in the formula sin1θ+cos1θ=π2{\sin ^{ - 1}}\theta + {\cos ^{ - 1}}\theta = \dfrac{\pi }{2}, we get
sin1x+cos1x=π2\Rightarrow {\sin ^{ - 1}}x + {\cos ^{ - 1}}x = \dfrac{\pi }{2}
Subtracting cos1x{\cos ^{ - 1}}x from both sides of the equation, we get
sin1x+cos1xcos1x=π2cos1x\Rightarrow {\sin ^{ - 1}}x + {\cos ^{ - 1}}x - {\cos ^{ - 1}}x = \dfrac{\pi }{2} - {\cos ^{ - 1}}x
Thus, we get
sin1x=π2cos1x\Rightarrow {\sin ^{ - 1}}x = \dfrac{\pi }{2} - {\cos ^{ - 1}}x
Substituting θ=y\theta = y in the formula sin1θ+cos1θ=π2{\sin ^{ - 1}}\theta + {\cos ^{ - 1}}\theta = \dfrac{\pi }{2}, we get
sin1y+cos1y=π2\Rightarrow {\sin ^{ - 1}}y + {\cos ^{ - 1}}y = \dfrac{\pi }{2}
Subtracting cos1y{\cos ^{ - 1}}y from both sides of the equation, we get
sin1y+cos1ycos1y=π2cos1y\Rightarrow {\sin ^{ - 1}}y + {\cos ^{ - 1}}y - {\cos ^{ - 1}}y = \dfrac{\pi }{2} - {\cos ^{ - 1}}y
Thus, we get
sin1y=π2cos1y\Rightarrow {\sin ^{ - 1}}y = \dfrac{\pi }{2} - {\cos ^{ - 1}}y
Now, we will find the value of the expression cos1x+cos1y{\cos ^{ - 1}}x + {\cos ^{ - 1}}y.
Substituting sin1x=π2cos1x{\sin ^{ - 1}}x = \dfrac{\pi }{2} - {\cos ^{ - 1}}x and sin1y=π2cos1y{\sin ^{ - 1}}y = \dfrac{\pi }{2} - {\cos ^{ - 1}}y in the equation sin1x+sin1y=2π3{\sin ^{ - 1}}x + {\sin ^{ - 1}}y = \dfrac{{2\pi }}{3}, we get
π2cos1x+π2cos1y=2π3\Rightarrow \dfrac{\pi }{2} - {\cos ^{ - 1}}x + \dfrac{\pi }{2} - {\cos ^{ - 1}}y = \dfrac{{2\pi }}{3}
Adding the terms of the expression, we get
π+π2cos1xcos1y=2π3\Rightarrow \dfrac{{\pi + \pi }}{2} - {\cos ^{ - 1}}x - {\cos ^{ - 1}}y = \dfrac{{2\pi }}{3}
Thus, we get
2π2cos1xcos1y=2π3 πcos1xcos1y=2π3\begin{array}{l} \Rightarrow \dfrac{{2\pi }}{2} - {\cos ^{ - 1}}x - {\cos ^{ - 1}}y = \dfrac{{2\pi }}{3}\\\ \Rightarrow \pi - {\cos ^{ - 1}}x - {\cos ^{ - 1}}y = \dfrac{{2\pi }}{3}\end{array}
Rewriting the expression, we get
π2π3=cos1x+cos1y\Rightarrow \pi - \dfrac{{2\pi }}{3} = {\cos ^{ - 1}}x + {\cos ^{ - 1}}y
We can rewrite the equation as
3π32π3=cos1x+cos1y\Rightarrow \dfrac{{3\pi }}{3} - \dfrac{{2\pi }}{3} = {\cos ^{ - 1}}x + {\cos ^{ - 1}}y
Subtracting the terms of the expression, we get
3π2π3=cos1x+cos1y\Rightarrow \dfrac{{3\pi - 2\pi }}{3} = {\cos ^{ - 1}}x + {\cos ^{ - 1}}y
Thus, we get
π3=cos1x+cos1y\Rightarrow \dfrac{\pi }{3} = {\cos ^{ - 1}}x + {\cos ^{ - 1}}y
Therefore, we get the value of the expression cos1x+cos1y{\cos ^{ - 1}}x + {\cos ^{ - 1}}y as π3\dfrac{\pi }{3}.

Thus, the correct option is option (b).

Note:
We can rewrite the equations sin1x+cos1x=π2{\sin ^{ - 1}}x + {\cos ^{ - 1}}x = \dfrac{\pi }{2} and sin1y+cos1y=π2{\sin ^{ - 1}}y + {\cos ^{ - 1}}y = \dfrac{\pi }{2} as cos1x=π2sin1x{\cos ^{ - 1}}x = \dfrac{\pi }{2} - {\sin ^{ - 1}}x and cos1y=π2sin1y{\cos ^{ - 1}}y = \dfrac{\pi }{2} - {\sin ^{ - 1}}y respectively.
Adding the two equations, we get
cos1x+cos1y=π2sin1x+π2sin1y\Rightarrow {\cos ^{ - 1}}x + {\cos ^{ - 1}}y = \dfrac{\pi }{2} - {\sin ^{ - 1}}x + \dfrac{\pi }{2} - {\sin ^{ - 1}}y
Adding the terms, we get
cos1x+cos1y=π+π2sin1xsin1y cos1x+cos1y=2π2sin1xsin1y cos1x+cos1y=πsin1xsin1y\begin{array}{l} \Rightarrow {\cos ^{ - 1}}x + {\cos ^{ - 1}}y = \dfrac{{\pi + \pi }}{2} - {\sin ^{ - 1}}x - {\sin ^{ - 1}}y\\\ \Rightarrow {\cos ^{ - 1}}x + {\cos ^{ - 1}}y = \dfrac{{2\pi }}{2} - {\sin ^{ - 1}}x - {\sin ^{ - 1}}y\\\ \Rightarrow {\cos ^{ - 1}}x + {\cos ^{ - 1}}y = \pi - {\sin ^{ - 1}}x - {\sin ^{ - 1}}y\end{array}
Factoring out 1 - 1 from the terms of the expression, we get
cos1x+cos1y=π1(sin1x+sin1y)\Rightarrow {\cos ^{ - 1}}x + {\cos ^{ - 1}}y = \pi - 1\left( {{{\sin }^{ - 1}}x + {{\sin }^{ - 1}}y} \right)
It is given that sin1x+sin1y=2π3{\sin ^{ - 1}}x + {\sin ^{ - 1}}y = \dfrac{{2\pi }}{3}.
Substituting sin1x+sin1y=2π3{\sin ^{ - 1}}x + {\sin ^{ - 1}}y = \dfrac{{2\pi }}{3} in the equation, we get
cos1x+cos1y=π1(2π3) cos1x+cos1y=π2π3\begin{array}{l} \Rightarrow {\cos ^{ - 1}}x + {\cos ^{ - 1}}y = \pi - 1\left( {\dfrac{{2\pi }}{3}} \right)\\\ \Rightarrow {\cos ^{ - 1}}x + {\cos ^{ - 1}}y = \pi - \dfrac{{2\pi }}{3}\end{array}
The L.C.M. of 1 and 3 is 3.
Rewriting the terms with a denominator of 3, we get
cos1x+cos1y=3π32π3\Rightarrow {\cos ^{ - 1}}x + {\cos ^{ - 1}}y = \dfrac{{3\pi }}{3} - \dfrac{{2\pi }}{3}
Subtracting the terms, we get
cos1x+cos1y=π3\Rightarrow {\cos ^{ - 1}}x + {\cos ^{ - 1}}y = \dfrac{\pi }{3}
Therefore, we get the value of the expression cos1x+cos1y{\cos ^{ - 1}}x + {\cos ^{ - 1}}y as π3\dfrac{\pi }{3}.
Thus, the correct option is option (b).