Question
Question: If \({\sin ^{ - 1}}\left( x \right) + {\sin ^{ - 1}}\left( y \right) + {\sin ^{ - 1}}\left( z \right...
If sin−1(x)+sin−1(y)+sin−1(z)=π , then prove that x1−x2+y1−y2+z1−z2=2xyz
Solution
Hint: In this question, we use the concept of inverse trigonometry and also use some basic trigonometric identities. First we assume sin−1x,sin−1y,sin−1z are some angle A, B, C and make a relation A+B+C=π and then we use identities sin2x=2sinxcosx , sinx+siny=2sin(2x+y)cos(2x−y) and cosx−cosy=2sin(2x+y)sin(2y−x).
Complete step-by-step solution:
Given, sin−1(x)+sin−1(y)+sin−1(z)=π
Let, sin−1(x)=A⇒x=sinA
sin−1(y)=B⇒y=sinB
sin−1(z)=C⇒z=sinC
Now, A+B+C=π..............(1) where A,B,C∈[−2π,2π]
To prove x1−x2+y1−y2+z1−z2=2xyz this equation . So, we have to prove the Left hand side (LHS) is equal to the right hand side (RHS).
Now take a LHS=x1−x2+y1−y2+z1−z2
Put the value of x, y and z in the left hand side (LHS).
LHS=sinA1−sin2A+sinB1−sin2B+sinC1−sin2C
We have to use an identity cosx=1−sin2x
LHS=sinAcosA+sinBcosB+sinCcosC LHS=2(2sinAcosA+2sinBcosB)+sinCcosC
Now use identity sin2x=2sinxcosx
LHS=2sin2A+sin2B+sinCcosC
Now use identity sinx+siny=2sin(2x+y)cos(2x−y)
From (1) equation, A+B=π−C
LHS=sin(π−C)cos(A−B)+sinCcosC
We Know, sin(π−C)=sinC
LHS=sinCcos(A−B)+sinCcosC
Take a common sinC as common,
LHS=sinC(cos(A−B)+cosC)
From (1) equation, C=π−A−B
LHS=sinC(cos(A−B)+cos(π−A−B))
We Know, cos(π−C)=−cosC
LHS=sinC(cos(A−B)−cos(A+B))
Now use identity cosx−cosy=2sin(2x+y)sin(2y−x)
Now put the value of sinA ,sinB and sinC.
LHS=2xyz=RHS
So, its proved x1−x2+y1−y2+z1−z2=2xyz.
Note: In such types of problems we have to prove left hand side (LHS) equal to right hand side (RHS). In LHS we use x=sinA,y=sinB,z=sinC (mentioned in above) and also use trigonometric identities. So, we will get the required answer.