Solveeit Logo

Question

Question: If \({\sin ^{ - 1}}\left( x \right) + {\sin ^{ - 1}}\left( y \right) + {\sin ^{ - 1}}\left( z \right...

If sin1(x)+sin1(y)+sin1(z)=π{\sin ^{ - 1}}\left( x \right) + {\sin ^{ - 1}}\left( y \right) + {\sin ^{ - 1}}\left( z \right) = \pi , then prove that x1x2+y1y2+z1z2=2xyzx\sqrt {1 - {x^2}} + y\sqrt {1 - {y^2}} + z\sqrt {1 - {z^2}} = 2xyz

Explanation

Solution

Hint: In this question, we use the concept of inverse trigonometry and also use some basic trigonometric identities. First we assume sin1x,sin1y,sin1z{\sin ^{ - 1}}x,{\sin ^{ - 1}}y,{\sin ^{ - 1}}z are some angle A, B, C and make a relation A+B+C=πA + B + C = \pi and then we use identities sin2x=2sinxcosx\sin 2x = 2\sin x\cos x , sinx+siny=2sin(x+y2)cos(xy2)\sin x + \sin y = 2\sin \left( {\dfrac{{x + y}}{2}} \right)\cos \left( {\dfrac{{x - y}}{2}} \right) and cosxcosy=2sin(x+y2)sin(yx2)\cos x - \cos y = 2\sin \left( {\dfrac{{x + y}}{2}} \right)\sin \left( {\dfrac{{y - x}}{2}} \right).

Complete step-by-step solution:

Given, sin1(x)+sin1(y)+sin1(z)=π{\sin ^{ - 1}}\left( x \right) + {\sin ^{ - 1}}\left( y \right) + {\sin ^{ - 1}}\left( z \right) = \pi
Let, sin1(x)=Ax=sinA{\sin ^{ - 1}}\left( x \right) = A \Rightarrow x = \sin A
sin1(y)=By=sinB{\sin ^{ - 1}}\left( y \right) = B \Rightarrow y = \sin B
sin1(z)=Cz=sinC{\sin ^{ - 1}}\left( z \right) = C \Rightarrow z = \sin C
Now, A+B+C=π..............(1)A + B + C = \pi ..............\left( 1 \right) where A,B,C[π2,π2]A,B,C \in \left[ { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right]
To prove x1x2+y1y2+z1z2=2xyzx\sqrt {1 - {x^2}} + y\sqrt {1 - {y^2}} + z\sqrt {1 - {z^2}} = 2xyz this equation . So, we have to prove the Left hand side (LHS) is equal to the right hand side (RHS).
Now take a LHS=x1x2+y1y2+z1z2LHS = x\sqrt {1 - {x^2}} + y\sqrt {1 - {y^2}} + z\sqrt {1 - {z^2}}
Put the value of x, y and z in the left hand side (LHS).
LHS=sinA1sin2A+sinB1sin2B+sinC1sin2CLHS = \sin A\sqrt {1 - {{\sin }^2}A} + \sin B\sqrt {1 - {{\sin }^2}B} + \sin C\sqrt {1 - {{\sin }^2}C}
We have to use an identity cosx=1sin2x\cos x = \sqrt {1 - {{\sin }^2}x}
LHS=sinAcosA+sinBcosB+sinCcosC LHS=(2sinAcosA+2sinBcosB)2+sinCcosC  LHS = \sin A\cos A + \sin B\cos B + \sin C\cos C \\\ LHS = \dfrac{{\left( {2\sin A\cos A + 2\sin B\cos B} \right)}}{2} + \sin C\cos C \\\
Now use identity sin2x=2sinxcosx\sin 2x = 2\sin x\cos x
LHS=sin2A+sin2B2+sinCcosCLHS = \dfrac{{\sin 2A + \sin 2B}}{2} + \sin C\cos C
Now use identity sinx+siny=2sin(x+y2)cos(xy2)\sin x + \sin y = 2\sin \left( {\dfrac{{x + y}}{2}} \right)\cos \left( {\dfrac{{x - y}}{2}} \right)

LHS=2sin(2A+2B2)cos(2A2B2)2+sinCcosC LHS=sin(A+B)cos(AB)+sinCcosC  LHS = \dfrac{{2\sin \left( {\dfrac{{2A + 2B}}{2}} \right)\cos \left( {\dfrac{{2A - 2B}}{2}} \right)}}{2} + \sin C\cos C \\\ LHS = \sin \left( {A + B} \right)\cos \left( {A - B} \right) + \sin C\cos C \\\

From (1) equation, A+B=πCA + B = \pi - C
LHS=sin(πC)cos(AB)+sinCcosCLHS = \sin \left( {\pi - C} \right)\cos \left( {A - B} \right) + \sin C\cos C
We Know, sin(πC)=sinC\sin \left( {\pi - C} \right) = \sin C
LHS=sinCcos(AB)+sinCcosCLHS = \sin C\cos \left( {A - B} \right) + \sin C\cos C
Take a common sinC\sin C as common,
LHS=sinC(cos(AB)+cosC)LHS = \sin C\left( {\cos \left( {A - B} \right) + \cos C} \right)
From (1) equation, C=πABC = \pi - A - B
LHS=sinC(cos(AB)+cos(πAB))LHS = \sin C\left( {\cos \left( {A - B} \right) + \cos \left( {\pi - A - B} \right)} \right)
We Know, cos(πC)=cosC\cos \left( {\pi - C} \right) = - \cos C
LHS=sinC(cos(AB)cos(A+B))LHS = \sin C\left( {\cos \left( {A - B} \right) - \cos \left( {A + B} \right)} \right)
Now use identity cosxcosy=2sin(x+y2)sin(yx2)\cos x - \cos y = 2\sin \left( {\dfrac{{x + y}}{2}} \right)\sin \left( {\dfrac{{y - x}}{2}} \right)

LHS=sinC(2sin(AB+A+B2)sin(A+BA+B2)) LHS=sinC(2sin(A)sin(B)) LHS=2sinAsinBsinC  LHS = \sin C\left( {2\sin \left( {\dfrac{{A - B + A + B}}{2}} \right)\sin \left( {\dfrac{{A + B - A + B}}{2}} \right)} \right) \\\ LHS = \sin C\left( {2\sin \left( A \right)\sin \left( B \right)} \right) \\\ LHS = 2\sin A\sin B\sin C \\\

Now put the value of sinA ,sinB and sinC.
LHS=2xyz=RHSLHS = 2xyz = RHS
So, its proved x1x2+y1y2+z1z2=2xyzx\sqrt {1 - {x^2}} + y\sqrt {1 - {y^2}} + z\sqrt {1 - {z^2}} = 2xyz.

Note: In such types of problems we have to prove left hand side (LHS) equal to right hand side (RHS). In LHS we use x=sinA,y=sinB,z=sinCx = \sin A,y = \sin B,z = \sin C (mentioned in above) and also use trigonometric identities. So, we will get the required answer.