Solveeit Logo

Question

Mathematics Question on Inverse Trigonometric Functions

If sin1(xx22+x34x48+...)π6\sin^{-1}\left(x-\frac{x^{2}}{2}+\frac{x^{3}}{4}-\frac{x^{4}}{8}+...\right)-\frac{\pi}{6} where x<2\left|x\right| < 2 then the value of xx is

A

23\frac{2}{3}

B

32\frac{3}{2}

C

23-\frac{2}{3}

D

32-\frac{3}{2}

Answer

23\frac{2}{3}

Explanation

Solution

The correct answer is A:23\frac{2}{3}
We have, sin1(xx22+x34x48+)=π6\sin ^{-1}\left(x-\frac{x^{2}}{2}+\frac{x^{3}}{4}-\frac{x^{4}}{8}+\ldots\right)=\frac{\pi}{6}
sin1(x1(x2))=π6\Rightarrow \sin ^{-1}\left(\frac{x}{1-\left(\frac{-x}{2}\right)}\right)=\frac{\pi}{6} [S=a1r]\left[\because S_{\infty}=\frac{a}{1-r}\right]
sin1(2x2+x)=π6\Rightarrow \sin ^{-1}\left(\frac{2 x}{2+x}\right)=\frac{\pi}{6}
2x2+x=sinπ6\Rightarrow \frac{2 x}{2+x}=\sin \frac{\pi}{6}
2x2+x=12\Rightarrow \frac{2 x}{2+x}=\frac{1}{2}
4x=2+x3x=2\Rightarrow 4 x=2+ x \Rightarrow 3 x=2
x=23\Rightarrow x=\frac{2}{3}
Trignometry