Question
Mathematics Question on Inverse Trigonometric Functions
If sin−1(x5)+sin−1x12=2π,then x =
A
137
B
34
C
13
D
713
Answer
13
Explanation
Solution
Put sin−1x5=A ∴x5=sinA sin−1x12=B ∴x12=sinB ∴A+B=2π ⇒sinA=sin(2π−B)=cosB 1−sin2B ⇒x5=1−x2144 ⇒x225=1−x2144 ⇒x2169=1 ⇒x2=169 ⇒x=13