Solveeit Logo

Question

Mathematics Question on Inverse Trigonometric Functions

If sin1(5x)+sin112x=π2\sin^{-1}\left(\frac{5}{x}\right)+\sin^{-1}\frac{12}{x}=\frac{\pi}{2},then x =

A

713\frac{7}{13}

B

43\frac{4}{3}

C

13

D

137\frac{13}{7}

Answer

13

Explanation

Solution

Put sin15x=Asin^{-1} \frac{5}{x} = A 5x=sinA \therefore \frac{5}{x} = sin\,A sin112x=Bsin^{-1} \frac{12}{x} =B 12x=sinB\therefore \frac{12}{x} = sin\,B A+B=π2\therefore A+B = \frac{\pi}{2} sinA=sin(π2B)=cosB\Rightarrow sin\, A = sin\left(\frac{\pi}{2}-B\right) = cos\,B 1sin2B\sqrt{1-sin^{2} B} 5x=1144x2\Rightarrow \frac{5}{x} = \sqrt{1-\frac{144}{x^{2}}} 25x2=1144x2\Rightarrow \frac{25}{x^{2}} = 1-\frac{144}{x^{2}} 169x2=1 \Rightarrow \frac{169}{x^{2}} = 1 x2=169\Rightarrow x^{2} = 169 x=13 \Rightarrow x=13