Solveeit Logo

Question

Mathematics Question on Trigonometric Identities

If sin1(2a1+a2)cos1(1b21+b2)=tan1(2x1x2),\sin^{-1} \left(\frac{2a}{1+a^{2}}\right) -\cos^{-1} \left(\frac{1-b^{2}}{1+b^{2}}\right) = \tan^{-1} \left(\frac{2x}{1-x^{2}}\right) , then what is the value of x?

A

a/b

B

ab

C

b/a

D

ab1+ab\frac{a-b}{1+ab}

Answer

ab1+ab\frac{a-b}{1+ab}

Explanation

Solution

Given ,
sin1(2a1+a2)cos1(1b21+b2)=tan1(2x1x2)\sin^{-1} \left(\frac{2a}{1+a^{2}}\right) -\cos^{-1} \left(\frac{1-b^{2}}{1+b^{2}}\right) = \tan^{-1} \left(\frac{2x}{1-x^{2}}\right)
2tan1a2tan1b=2tan1x\therefore 2 \tan^{-1} a - 2\tan^{-1} b =2 \tan^{-1} x
tan1atan1b=tan1x\Rightarrow \tan^{-1}a -\tan^{-1} b =\tan^{-1}x
tan1(ab1+ab)=tan1x\Rightarrow \tan^{-1} \left(\frac{a-b}{1+ab}\right) = \tan^{-1}x
x=ab1+ab\Rightarrow x = \frac{a-b}{1+ ab}