Question
Question: If 𝑥 = 𝑎(𝜃 − sin 𝜃 ), 𝑦 = 𝑎 (1 − cos 𝜃 ) find 𝑑2𝑦 𝑑𝑥2 ....
If 𝑥 = 𝑎(𝜃 − sin 𝜃 ), 𝑦 = 𝑎 (1 − cos 𝜃 ) find 𝑑2𝑦 𝑑𝑥2 .
−y2a
Solution
We are given the parametric equations: x=a(θ−sinθ) y=a(1−cosθ)
First, find the derivatives of x and y with respect to θ: dθdx=a(1−cosθ) dθdy=asinθ
Now, find the first derivative dxdy: dxdy=dx/dθdy/dθ=a(1−cosθ)asinθ=1−cosθsinθ Using half-angle identities, sinθ=2sin(θ/2)cos(θ/2) and 1−cosθ=2sin2(θ/2): dxdy=2sin2(θ/2)2sin(θ/2)cos(θ/2)=cot(θ/2)
To find the second derivative dx2d2y, we use the formula: dx2d2y=dxd(dxdy)=dθd(dxdy)⋅dxdθ We have dθd(cot(θ/2))=−21csc2(θ/2). And dxdθ=dx/dθ1=a(1−cosθ)1.
Substituting these into the formula: dx2d2y=(−21csc2(θ/2))⋅(a(1−cosθ)1) Using csc2(θ/2)=sin2(θ/2)1 and 1−cosθ=2sin2(θ/2), so sin2(θ/2)=21−cosθ: dx2d2y=(−21⋅1−cosθ2)⋅(a(1−cosθ)1)=−a(1−cosθ)21 Since y=a(1−cosθ), we have 1−cosθ=ay. dx2d2y=−a(ay)21=−aa2y21=−y2a