Solveeit Logo

Question

Question: If 𝑥 = 𝑎(𝜃 − sin 𝜃 ), 𝑦 = 𝑎 (1 − cos 𝜃 ) find 𝑑2𝑦 𝑑𝑥2 ....

If 𝑥 = 𝑎(𝜃 − sin 𝜃 ), 𝑦 = 𝑎 (1 − cos 𝜃 ) find 𝑑2𝑦 𝑑𝑥2 .

Answer

ay2-\frac{a}{y^2}

Explanation

Solution

We are given the parametric equations: x=a(θsinθ)x = a(\theta - \sin \theta ) y=a(1cosθ)y = a (1 − \cos \theta )

First, find the derivatives of xx and yy with respect to θ\theta: dxdθ=a(1cosθ)\frac{dx}{d\theta} = a(1 - \cos \theta) dydθ=asinθ\frac{dy}{d\theta} = a \sin \theta

Now, find the first derivative dydx\frac{dy}{dx}: dydx=dy/dθdx/dθ=asinθa(1cosθ)=sinθ1cosθ\frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} = \frac{a \sin \theta}{a(1 - \cos \theta)} = \frac{\sin \theta}{1 - \cos \theta} Using half-angle identities, sinθ=2sin(θ/2)cos(θ/2)\sin \theta = 2 \sin(\theta/2) \cos(\theta/2) and 1cosθ=2sin2(θ/2)1 - \cos \theta = 2 \sin^2(\theta/2): dydx=2sin(θ/2)cos(θ/2)2sin2(θ/2)=cot(θ/2)\frac{dy}{dx} = \frac{2 \sin(\theta/2) \cos(\theta/2)}{2 \sin^2(\theta/2)} = \cot(\theta/2)

To find the second derivative d2ydx2\frac{d^2y}{dx^2}, we use the formula: d2ydx2=ddx(dydx)=ddθ(dydx)dθdx\frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{d}{d\theta}\left(\frac{dy}{dx}\right) \cdot \frac{d\theta}{dx} We have ddθ(cot(θ/2))=12csc2(θ/2)\frac{d}{d\theta}(\cot(\theta/2)) = -\frac{1}{2} \csc^2(\theta/2). And dθdx=1dx/dθ=1a(1cosθ)\frac{d\theta}{dx} = \frac{1}{dx/d\theta} = \frac{1}{a(1 - \cos \theta)}.

Substituting these into the formula: d2ydx2=(12csc2(θ/2))(1a(1cosθ))\frac{d^2y}{dx^2} = \left(-\frac{1}{2} \csc^2(\theta/2)\right) \cdot \left(\frac{1}{a(1 - \cos \theta)}\right) Using csc2(θ/2)=1sin2(θ/2)\csc^2(\theta/2) = \frac{1}{\sin^2(\theta/2)} and 1cosθ=2sin2(θ/2)1 - \cos \theta = 2 \sin^2(\theta/2), so sin2(θ/2)=1cosθ2\sin^2(\theta/2) = \frac{1 - \cos \theta}{2}: d2ydx2=(1221cosθ)(1a(1cosθ))=1a(1cosθ)2\frac{d^2y}{dx^2} = \left(-\frac{1}{2} \cdot \frac{2}{1 - \cos \theta}\right) \cdot \left(\frac{1}{a(1 - \cos \theta)}\right) = -\frac{1}{a(1 - \cos \theta)^2} Since y=a(1cosθ)y = a(1 - \cos \theta), we have 1cosθ=ya1 - \cos \theta = \frac{y}{a}. d2ydx2=1a(ya)2=1ay2a2=ay2\frac{d^2y}{dx^2} = -\frac{1}{a \left(\frac{y}{a}\right)^2} = -\frac{1}{a \frac{y^2}{a^2}} = -\frac{a}{y^2}