Solveeit Logo

Question

Mathematics Question on Inverse Trigonometric Functions

If sin1α=tan134\sin^{-1} \alpha = \tan^{-1} \frac{3}{4}, then α\alpha equals :

A

35\frac{3}{5}

B

1

C

25\frac{2}{5}

D

34\frac{3}{4}

Answer

35\frac{3}{5}

Explanation

Solution

Let sin1α=tan134\sin^{-1} \alpha = \tan^{-1} \frac{3}{4} .......(1) To find α\alpha Put tan134=θtanθ=34\tan^{-1} \frac{3}{4} = \theta \Rightarrow \tan\theta = \frac{3}{4} Now equation (i) becomes sin1α=θα=sinθ\sin^{-1} \alpha = \theta \Rightarrow \alpha = \sin\theta α=1cosecθ=11+cot2θ\Rightarrow \alpha = \frac{ 1}{cosec \theta} = \frac{ 1}{\sqrt{1+ \cot^{2} \theta}} α=11+1tan2θ=11+(43)2\Rightarrow \alpha = \frac{1}{\sqrt{1+\frac{1}{\tan^{2} \theta}} } = \frac{ 1}{\sqrt{1 + \left(\frac{4}{3}\right)^{2}} } α=35\Rightarrow \alpha = \frac{3}{5}