Solveeit Logo

Question

Question: If \(\sin^{- 1}\frac{2a}{1 + a^{2}} - \cos^{- 1}\frac{1 - b^{2}}{1 + b^{2}} = \tan^{- 1}\frac{2x}{1 ...

If sin12a1+a2cos11b21+b2=tan12x1x2,\sin^{- 1}\frac{2a}{1 + a^{2}} - \cos^{- 1}\frac{1 - b^{2}}{1 + b^{2}} = \tan^{- 1}\frac{2x}{1 - x^{2}}, then x=x =

A

a

B

b

C

a+b1ab\frac{a + b}{1 - ab}

D

ab1+ab\frac{a - b}{1 + ab}

Answer

ab1+ab\frac{a - b}{1 + ab}

Explanation

Solution

Put a=tanθ,b=tanφa = \tan\theta,b = \tan\varphi and x=tanψ,x = \tan\psi, then reduced form is

sin1(sin2θ)cos1(cos2φ)=tan1(tan2ψ)\sin^{- 1}(\sin 2\theta) - \cos^{- 1}(\cos 2\varphi) = \tan^{- 1}(\tan 2\psi)

2θ2φ=2ψθφ=ψ2\theta - 2\varphi = 2\psi \Rightarrow \theta - \varphi = \psi

Taking tan on both sides, we get tan(θφ)\tan(\theta - \varphi) = tanψ\tan\psi

tanθtanφ1+tanθ.tanφ=tanψ\frac{\tan\theta - \tan\varphi}{1 + \tan\theta.\tan\varphi} = \tan\psi

Substituting these values, we get ab1+ab=x\frac{a - b}{1 + ab} = x