Solveeit Logo

Question

Question: If \(\sin^{- 1}(A + iB) = x + iy,\) then \(\frac{A}{B}\) equals....

If sin1(A+iB)=x+iy,\sin^{- 1}(A + iB) = x + iy, then AB\frac{A}{B} equals.

A

tanxtanhy\frac{\tan x}{\tanh y}

B

tanhxtany\frac{\tanh x}{\tan y}

C

tanhxtanhy\frac{\tanh x}{\tanh y}

D

cosxcoshy\frac{\cos x}{{\cos h}y}

Answer

tanxtanhy\frac{\tan x}{\tanh y}

Explanation

Solution

sin1(A+iB)=x+iy\sin^{- 1}(A + iB) = x + iyA+iB=sin(x+iy)A + iB = \sin(x + iy)

A+iB=sinxcoshy+icosxsinhyA + iB = \sin x{\cos h}y + i\cos x{\sin h}y

AB=sinxcoshycosxsinhy=tanxtanhy\frac{A}{B} = \frac{\sin x{\cos h}y}{\cos x{\sin h}y} = \frac{\tan x}{{\tan h}y}.