Solveeit Logo

Question

Question: If \(\sin ^ { - 1 } ( 1 - x ) - 2 \sin ^ { - 1 } x = \pi / 2\) , then x equals....

If sin1(1x)2sin1x=π/2\sin ^ { - 1 } ( 1 - x ) - 2 \sin ^ { - 1 } x = \pi / 2 , then x equals.

A

(0,12)\left( 0 , - \frac { 1 } { 2 } \right)

B

(12,0)\left( \frac { 1 } { 2 } , 0 \right)

C

{0}

D

(–1,0)

Answer

{0}

Explanation

Solution

sin1(1x)2sin1x=π2\sin ^ { - 1 } ( 1 - x ) - 2 \sin ^ { - 1 } x = \frac { \pi } { 2 }

sin1(1x)=(π22sin1x)\sin ^ { - 1 } ( 1 - x ) = \left( \frac { \pi } { 2 } - 2 \sin ^ { - 1 } x \right)

1x=sin(π22sin1x)1 - x = \sin \left( \frac { \pi } { 2 } - 2 \sin ^ { - 1 } x \right)

1x=sinπ2cos(2sin1x)cosπ2sin(2sin1x)1 - x = \sin \frac { \pi } { 2 } \cos \left( 2 \sin ^ { - 1 } x \right) - \cos \frac { \pi } { 2 } \sin \left( 2 \sin ^ { - 1 } x \right)

1x=cos(2sin1x)21 - x = \cos \left( 2 \sin ^ { - 1 } x \right) ^ { 2 }

1x=coscos1(12x1 - x = \cos \cos ^ { - 1 } ( 1 - 2 x2x2x=02 x ^ { 2 } - x = 0

x=0x = 0, x=1/2x = 1 / 2which does not satisfy the equation

x=0x = 0 is only the solution.