Solveeit Logo

Question

Question: If \(\sec\theta + \tan\theta = p,\) then \(\tan\theta\)is equal to...

If secθ+tanθ=p,\sec\theta + \tan\theta = p, then tanθ\tan\thetais equal to

A

2pp21\frac{2p}{p^{2} - 1}

B

p212p\frac{p^{2} - 1}{2p}

C

p2+12p\frac{p^{2} + 1}{2p}

D

2pp2+1\frac{2p}{p^{2} + 1}

Answer

p212p\frac{p^{2} - 1}{2p}

Explanation

Solution

secθ+tanθ=psecθtanθ=1p\sec\theta + \tan\theta = p \Rightarrow \sec\theta - \tan\theta = \frac{1}{p}

Subtracting second from first, we get 2tanθ=p1p2\tan\theta = p - \frac{1}{p}

tanθ=p212p\Rightarrow \tan\theta = \frac{p^{2} - 1}{2p}.