Question
Question: If \((\sec\alpha + \tan\alpha)(\sec\beta + \tan\beta)(\sec\gamma + \tan\gamma) = \tan\alpha\tan\beta...
If (secα+tanα)(secβ+tanβ)(secγ+tanγ)=tanαtanβtanγ, then (secα−tanα)(secβ−tanβ)(secγ−tanγ)=
A
cotαcotβcotγ
B
tanαtanβtanγ
C
cotα+cotβ+cotγ
D
tanα+tanβ+tanγ
Answer
cotαcotβcotγ
Explanation
Solution
Given : (secα+tanα)(secβ+tanβ)(secγ+tanγ)
=tanαtanβtanγ ...(i)
Letx=(secα−tanα)(secβ−tanβ)(secγ−tanγ) ...(ii)
Multiply both equations, (i) and (ii), we get
(sec2α−tan2α)(sec2β−tan2β)(sec2γ−tan2γ)
=x.(tanαtanβtanγ)
⇒x=tanαtanβtanγ1 ∴x=cotαcotβcotγ