Solveeit Logo

Question

Question: If \((\sec\alpha + \tan\alpha)(\sec\beta + \tan\beta)(\sec\gamma + \tan\gamma) = \tan\alpha\tan\beta...

If (secα+tanα)(secβ+tanβ)(secγ+tanγ)=tanαtanβtanγ(\sec\alpha + \tan\alpha)(\sec\beta + \tan\beta)(\sec\gamma + \tan\gamma) = \tan\alpha\tan\beta\tan\gamma, then (secαtanα)(secβtanβ)(secγtanγ)=(\sec\alpha - \tan\alpha)(\sec\beta - \tan\beta)(\sec\gamma - \tan\gamma) =

A

cotαcotβcotγ\cot\alpha\cot\beta\cot\gamma

B

tanαtanβtanγ\tan\alpha\tan\beta\tan\gamma

C

cotα+cotβ+cotγ\cot\alpha + \cot\beta + \cot\gamma

D

tanα+tanβ+tanγ\tan\alpha + \tan\beta + \tan\gamma

Answer

cotαcotβcotγ\cot\alpha\cot\beta\cot\gamma

Explanation

Solution

Given : (secα+tanα)(secβ+tanβ)(secγ+tanγ)(\sec\alpha + \tan\alpha)(\sec\beta + \tan\beta)(\sec\gamma + \tan\gamma)

=tanαtanβtanγ= \tan\alpha\tan\beta\tan\gamma ...(i)

Letx=(secαtanα)(secβtanβ)(secγtanγ)x = (\sec\alpha - \tan\alpha)(\sec\beta - \tan\beta)(\sec\gamma - \tan\gamma) ...(ii)

Multiply both equations, (i) and (ii), we get

(sec2αtan2α)(sec2βtan2β)(sec2γtan2γ)(\sec^{2}\alpha - \tan^{2}\alpha)(\sec^{2}\beta - \tan^{2}\beta)(\sec^{2}\gamma - \tan^{2}\gamma)

=x.(tanαtanβtanγ)= x.(\tan\alpha\tan\beta\tan\gamma)

x=1tanαtanβtanγ\Rightarrow x = \frac{1}{\tan\alpha\tan\beta\tan\gamma} x=cotαcotβcotγ\therefore x = \cot\alpha\cot\beta\cot\gamma