Question
Question: If \(secA = x + \dfrac{1}{{4x}},x \ne 0\) then find the value of \((\operatorname{Sec} A + \operator...
If secA=x+4x1,x=0 then find the value of (SecA+TanA).
Solution
First of all find the’secA’from the given condition, then just reverse it to get the value ofCosA.
By using identity: sin2A+cos2A=1, find SinA.
Now use the relationship betweensinA,cosAand tanAto findsecA.$$$$
Then substitute the values of both tanAandsecAin the given equation.
∴(tanA+secA)=2x
Complete step-by-step answer:
We have secA=x+4x1,x=0
By taking L.C.M as 4x, we get
secA=x+4x1=4x4x2+1
Therefore, cosA=secA1=4x2+14x.
For any acute angleA, we have identity: sin2A+cos2A=1.
Hence, sinA=1−cos2A
Simply substitute the value of CosAin the above equation, we get
sinA=1−(4x2+14x)2
sinA=1−(4x2+1)216x2
Taking L.C.M as (4x2+1)2in the denominator
sinA=(4x2+1)2(4x2+1)2−16x2
⇒sinA=(4x2+1)2(4x2−1)2
We can write the above equation after removing the square as
sinA=±(4x2+1)(4x2−1)
If sinA=(4x2+1)(4x2−1)then
We have
secA+tanA=4x4x2+1+4x4x2−1
After solving, we get
secA+tanA=2x
If sinA=−(4x2+1)(4x2−1)then
secA+tanA=4x4x2+1−4x (4x2−1)
On further solving we get,
secA+tanA=2x1
Note: The trigonometric ratios of an acute angle in a right triangle express the relationship between the angles and the length of its sides.
Tangent of ∠A=BasePerpendicular i.e. tanA=BP ,
Cotangent of ∠A=tanA1=PB ∠A=tanA1=PB,
Secant of∠A=cosA1=BaseHypotenuse=BHand
For any acute angle A, we have identity: sin2A+cos2A=1