Solveeit Logo

Question

Question: If \(secA = x + \dfrac{1}{{4x}},x \ne 0\) then find the value of \((\operatorname{Sec} A + \operator...

If secA=x+14x,x0secA = x + \dfrac{1}{{4x}},x \ne 0 then find the value of (SecA+TanA)(\operatorname{Sec} A + \operatorname{Tan} A).

Explanation

Solution

First of all find the’secAsecA’from the given condition, then just reverse it to get the value ofCosA\operatorname{Cos} A.
By using identity: sin2A+cos2A=1si{n^2}A + co{s^2}A = 1, find SinA\operatorname{Sin} A.
Now use the relationship betweensinA,cosAsinA,cosAand tanAtanAto findsecAsecA.$$$$
Then substitute the values of both tanAtanAandsecAsecAin the given equation.
(tanA+secA)=2x\therefore (tanA + secA) = 2x

Complete step-by-step answer:
We have secA=x+14x,x0secA = x + \dfrac{1}{{4x}},x \ne 0
By taking L.C.M as 4x4x, we get
secA=x+14x=4x2+14xsecA = x + \dfrac{1}{{4x}} = \dfrac{{4{x^2} + 1}}{{4x}}
Therefore, cosA=1secA=4x4x2+1cosA = \dfrac{1}{{secA}} = \dfrac{{4x}}{{4{x^2} + 1}}.
For any acute angleAA, we have identity: sin2A+cos2A=1si{n^2}A + co{s^2}A = 1.
Hence, sinA=1cos2AsinA = \sqrt {1 - co{s^2}A}
Simply substitute the value of CosA\operatorname{Cos} Ain the above equation, we get
sinA=1(4x4x2+1)2sinA = \sqrt {1 - {{\left( {\dfrac{{4x}}{{4{x^2} + 1}}} \right)}^2}}
sinA=116x2(4x2+1)2sinA = \sqrt {1 - \dfrac{{16{x^2}}}{{{{(4{x^2} + 1)}^2}}}}
Taking L.C.M as (4x2+1)2{(4{x^2} + 1)^2}in the denominator
sinA=(4x2+1)216x2(4x2+1)2sinA = \sqrt {\dfrac{{{{(4{x^2} + 1)}^2} - 16{x^2}}}{{{{(4{x^2} + 1)}^2}}}}
sinA=(4x21)2(4x2+1)2\Rightarrow sinA = \sqrt {\dfrac{{{{(4{x^2} - 1)}^2}}}{{{{(4{x^2} + 1)}^2}}}}
We can write the above equation after removing the square as
sinA=±(4x21)(4x2+1)sinA = \pm \dfrac{{(4{x^2} - 1)}}{{(4{x^2} + 1)}}
If sinA=(4x21)(4x2+1)sinA = \dfrac{{(4{x^2} - 1)}}{{(4{x^2} + 1)}}then
We have
secA+tanA=4x2+14x+4x214xsecA + tanA = \dfrac{{4{x^2} + 1}}{{4x}} + \dfrac{{4{x^2} - 1}}{{4x}}
After solving, we get
secA+tanA=2xsecA + tanA = 2x
If sinA=(4x21)(4x2+1)sinA = - \dfrac{{(4{x^2} - 1)}}{{(4{x^2} + 1)}}then
secA+tanA=4x2+14x (4x21) 4xsecA + tanA = \dfrac{{4{x^2} + 1}}{{4x}} - \dfrac{\begin{gathered} \\\ (4{x^2} - 1) \\\ \end{gathered} }{{4x}}
On further solving we get,

secA+tanA=12xsecA + tanA = \dfrac{1}{{2x}}

Note: The trigonometric ratios of an acute angle in a right triangle express the relationship between the angles and the length of its sides.
Tangent of A=PerpendicularBase\angle A = \dfrac{{Perpendicular}}{{Base}} i.e. tanA=PBtanA = \dfrac{P}{B} ,
Cotangent of A=1tanA=BP\angle A = \dfrac{1}{{tanA}} = \dfrac{B}{P} A=1tanA=BP\angle A = \dfrac{1}{{tanA}} = \dfrac{B}{P},
Secant ofA=1cosA=HypotenuseBase=HB\angle A = \dfrac{1}{{cosA}} = \dfrac{{Hypotenuse}}{{Base}} = \dfrac{H}{B}and
For any acute angle AA, we have identity: sin2A+cos2A=1si{n^2}A + co{s^2}A = 1