Solveeit Logo

Question

Mathematics Question on Trigonometric Functions

If secθ=x+14x,xR,x0\sec \, \theta = x + \frac{1}{4x}, x \in R , x \neq 0, then the value of secθ+tanθ\sec \, \theta + \tan \, \theta is

A

2x

B

12x\frac{1}{2x}

C

2x2x or 12x\frac{1}{2x}

D

none of these

Answer

2x2x or 12x\frac{1}{2x}

Explanation

Solution

tan2θ=sec2θ1\tan^{2} \theta = \sec^{2} \theta - 1 =(x+14x)21=(x14x)2 = \left(x+ \frac{1}{4x}\right)^{2} - 1 = \left(x - \frac{1}{4x}\right) ^{2} tanθ=±(x14x) \Rightarrow \tan\theta = \pm \left(x - \frac{1}{4x}\right) secθ+tanθ=x+14x±(x14x) \Rightarrow \sec\theta +\tan\theta = x + \frac{1}{4x} \pm\left( x - \frac{1}{4x}\right)