Solveeit Logo

Question

Question: If \[\sec \theta = x + \dfrac{1}{{4x}}\] , then the value of \( \sec \theta + \tan \theta \) is equa...

If secθ=x+14x\sec \theta = x + \dfrac{1}{{4x}} , then the value of secθ+tanθ\sec \theta + \tan \theta is equal to

Explanation

Solution

Hint: We can use some of the basic trigonometric formulas which are related to the functions mentioned in the question for example sec2θtan2θ=1{\sec ^2}\theta - {\tan ^2}\theta = 1 use this formula to find the value of an unknown trigonometric function i.e. tanθ\tan\theta in terms of ‘x’. THen we just need to add both.

Complete step-by-step answer:
According to the given information secθ=x+14x\sec \theta = x + \dfrac{1}{{4x}} ---(equation 1)
To find the value of secθ+tanθ\sec \theta + \tan \theta we need the value of tanθ\tan \theta
Let secθ+tanθ\sec \theta + \tan \theta be the equation 2
So by the trigonometric formula sec2θtan2θ=1{\sec ^2}\theta - {\tan ^2}\theta = 1
\Rightarrow tan2θ=sec2θ1{\tan ^2}\theta = {\sec ^2}\theta - 1
Now let put the value of secθ\sec \theta by the equation 1
tan2θ=(x+14x)21{\tan ^2}\theta = {(x + \dfrac{1}{{4x}})^2} - 1
\Rightarrow tan2θ=(4x2+14x)21{\tan ^2}\theta = {(\dfrac{{4{x^2} + 1}}{{4x}})^2} - 1
\Rightarrow tan2θ=16x4+1+8x216x21{\tan ^2}\theta = \dfrac{{16{x^4} + 1 + 8{x^2}}}{{16{x^2}}} - 1
\Rightarrow tan2θ=16x4+1+8x216x216x2{\tan ^2}\theta = \dfrac{{16{x^4} + 1 + 8{x^2} - 16{x^2}}}{{16{x^2}}} =16x4+1+8x216x2 = \dfrac{{16{x^4} + 1 + - 8{x^2}}}{{16{x^2}}}
\Rightarrow tan2θ=(4x21)216x2{\tan ^2}\theta = \dfrac{{{{(4{x^2} - 1)}^2}}}{{16{x^2}}}
Applying square root on both sides
\Rightarrow tan2θ=(4x21)216x2\sqrt {{{\tan }^2}\theta } = \sqrt {\dfrac{{{{(4{x^2} - 1)}^2}}}{{16{x^2}}}}
\Rightarrow tanθ=4x214x\tan \theta = \dfrac{{4{x^2} - 1}}{{4x}} = x14xx - \dfrac{1}{{4x}}
Now put the value of secθ\sec \theta and tanθ\tan \theta in equation 2
\Rightarrow secθ+tanθ\sec \theta + \tan \theta = x+14xx + \dfrac{1}{{4x}} + x14xx - \dfrac{1}{{4x}}
\Rightarrow secθ+tanθ=2x\sec \theta + \tan \theta = 2x

Note: In these types of questions use the basic trigonometric formula like sec2θtan2θ=1{\sec ^2}\theta - {\tan ^2}\theta = 1 to get the value of tanθ\tan \theta then to simplify the value of tanθ\tan \theta the simplest form to use the value in the question after finding the value of tanθ\tan \theta directly use it and find the value of secθ+tanθ\sec \theta + \tan \theta .