Solveeit Logo

Question

Question: If \(\sec \theta =x+\dfrac{1}{4x}\) then prove that \(\sec \theta +\tan \theta =2x\text{ or, }\dfrac...

If secθ=x+14x\sec \theta =x+\dfrac{1}{4x} then prove that secθ+tanθ=2x or, 12x\sec \theta +\tan \theta =2x\text{ or, }\dfrac{1}{2x}.

Explanation

Solution

Hint: Using secθ\theta we calculate the value of tanθ\theta by using the identity sec2θtan2θ=1{{\sec }^{2}}\theta -{{\tan }^{2}}\theta =1. After getting the value of tanθ\tan \theta. We can evaluate the value of secθ\theta + tanθ\theta. We can easily prove whether both the values given in the question are correct or not.

Complete step-by-step answer:

Given: secθ=x+14x\sec \theta =x+\dfrac{1}{4x}.
To prove: secθ+tanθ=2x or, 12x\sec \theta +\tan \theta =2x\text{ or, }\dfrac{1}{2x}.
Proof: secθ=x+14x\sec \theta =x+\dfrac{1}{4x}(Given in the question)
By the help of basic trigonometry identity sec2θtan2θ=1{{\sec }^{2}}\theta -{{\tan }^{2}}\theta =1 proceeding towards our question.
Therefore, the value of tan2θ{{\tan }^{2}}\theta is:
1+tan2θ=sec2θ tan2θ=sec2θ1 \begin{aligned} & 1+{{\tan }^{2}}\theta ={{\sec }^{2}}\theta \\\ & {{\tan }^{2}}\theta ={{\sec }^{2}}\theta -1 \\\ \end{aligned}Putting the value of secθ\sec \theta in the above equation the equation is:
tan2θ=(x+14x)21\therefore {{\tan }^{2}}\theta ={{\left( x+\dfrac{1}{4x} \right)}^{2}}-1
Using the identity (a+b)2=a2+b2+2ab{{(a+b)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab, we can expand the above equation.
tan2θ=x2+116x2+2×x×14x1{{\tan }^{2}}\theta ={{x}^{2}}+\dfrac{1}{16{{x}^{2}}}+2\times x\times \dfrac{1}{4x}-1
On solving the above equation, the value of tan2θ{{\tan }^{2}}\theta is obtained as:
tan2θ=x2+12+116x21 tan2θ=x212+116x2 \begin{aligned} & \Rightarrow {{\tan }^{2}}\theta ={{x}^{2}}+\dfrac{1}{2}+\dfrac{1}{16{{x}^{2}}}-1 \\\ & \Rightarrow {{\tan }^{2}}\theta ={{x}^{2}}-\dfrac{1}{2}+\dfrac{1}{16{{x}^{2}}} \\\ \end{aligned}
Here, one identity which is used can be stated as:
a22ab+b2=(ab)2{{a}^{2}}-2ab+{{b}^{2}}={{(a-b)}^{2}}
To find the value of tanθ\tan \theta we solve further by using the above stated identity,
tan2θ=(x14x)2\Rightarrow {{\tan }^{2}}\theta ={{\left( x-\dfrac{1}{4x} \right)}^{2}}
Now taking the square root of both sides we get two values as the square produces the same result for negative and positive values.
So, the value can be expressed as tanθ=x14x\tan \theta =x-\dfrac{1}{4x} or tanθ=(x14x)\tan \theta =-\left( x-\dfrac{1}{4x} \right)
Substitute the value of secθ\sec \theta and tanθ\tan \theta in the given equation i.e. secθ+tanθ\sec \theta +\tan \theta :
secθ+tanθ=x+14x+x14x secθ+tanθ=2x \begin{aligned} & \sec \theta +\tan \theta =x+\dfrac{1}{4x}+x-\dfrac{1}{4x} \\\ & \sec \theta +\tan \theta =2x \\\ \end{aligned}
\thereforeThe one value of secθ+tanθ=2x\sec \theta +\tan \theta =2x is thus proved.
Now, putting the value of tanθ=(x14x)\tan \theta =-\left( x-\dfrac{1}{4x} \right).
secθ+tanθ=x+14xx+14x secθ+tanθ=24x \begin{aligned} & \sec \theta +\tan \theta =x+\dfrac{1}{4x}-x+\dfrac{1}{4x} \\\ & \sec \theta +\tan \theta =\dfrac{2}{4x} \\\ \end{aligned}
Reducing the above equation to get same expression as shown in the prove of question,
secθ+tanθ=12x\sec \theta +\tan \theta =\dfrac{1}{2x}
\therefore The other value of secθ+tanθ\sec \theta +\tan \theta is 12x\dfrac{1}{2x}.
Therefore, all the possible values of secθ+tanθ\sec \theta +\tan \theta are 12x,2x\dfrac{1}{2x},2x.
Hence, we proved that secθ+tanθ=2x or, 12x\sec \theta +\tan \theta =2x\text{ or, }\dfrac{1}{2x}.

Note: The key step in this problem is the consideration of both the values returned by square root.
Most of the students proceed with only one value and are thus able to prove only one result due to inappropriate knowledge of square root operators. We must take both the values of tanθ\tan \theta.