Solveeit Logo

Question

Question: If \(\sec \theta =x+\dfrac{1}{4x}\), prove that \(\sec \theta +\tan \theta =2x\) or \(\dfrac{1}{2x}\...

If secθ=x+14x\sec \theta =x+\dfrac{1}{4x}, prove that secθ+tanθ=2x\sec \theta +\tan \theta =2x or 12x\dfrac{1}{2x}.

Explanation

Solution

Hint: We have been given secθ=x+14x\sec \theta =x+\dfrac{1}{4x}. So use the formula sec2θ1=tan2θ{{\sec }^{2}}\theta -1={{\tan }^{2}}\theta and simplify. You will get the value of tanθ\tan \theta . After that add secθ\sec \theta and tanθ\tan \theta . You will get the answer.

Complete step-by-step answer:
Now taking secθ=x+14x\sec \theta =x+\dfrac{1}{4x},

We have been given secθ\sec \theta and from that we will find tanθ\tan \theta .

We know that sec2θ1=tan2θ{{\sec }^{2}}\theta -1={{\tan }^{2}}\theta .

So substituting value of secθ\sec \theta in above identity we get,
(x+14x)21=tan2θ{{\left( x+\dfrac{1}{4x} \right)}^{2}}-1={{\tan }^{2}}\theta
Simplifying we get,

& {{x}^{2}}+2(x)\dfrac{1}{4x}+{{\left( \dfrac{1}{4x} \right)}^{2}}-1={{\tan }^{2}}\theta \\\ & {{x}^{2}}+\dfrac{1}{2}+\left( \dfrac{1}{16{{x}^{2}}} \right)-1={{\tan }^{2}}\theta \\\ & {{x}^{2}}+\left( \dfrac{1}{16{{x}^{2}}} \right)-\dfrac{1}{2}={{\tan }^{2}}\theta \\\ & {{\left( x-\dfrac{1}{4x} \right)}^{2}}={{\tan }^{2}}\theta \\\ \end{aligned}$$ So taking square root of both sides we get, $$\tan \theta =\pm \left( x-\dfrac{1}{4x} \right)$$ We get, $$\tan \theta =\left( x-\dfrac{1}{4x} \right)$$ and $$\tan \theta =-x+\dfrac{1}{4x}$$ So now we have got $\tan \theta $. Now adding $\tan \theta $ and $\sec \theta $, $\sec \theta +\tan \theta =x+\dfrac{1}{4x}\pm \left( x-\dfrac{1}{4x} \right)$ $\sec \theta +\tan \theta =x+\dfrac{1}{4x}+\left( x-\dfrac{1}{4x} \right)$ or $\sec \theta +\tan \theta =x+\dfrac{1}{4x}-\left( x-\dfrac{1}{4x} \right)$ Simplifying we get, $\sec \theta +\tan \theta =2x$ or $\sec \theta +\tan \theta =\dfrac{1}{2x}$ So we get the values $\sec \theta +\tan \theta =2x$ or $\sec \theta +\tan \theta =\dfrac{1}{2x}$. Hence proved. Note: Read the question carefully. Do not make any silly mistakes. Also, you must be familiar with the trigonometric identities. Do not confuse yourself while simplifying. Also, take care that no terms are missing and do not jumble with the signs.