Solveeit Logo

Question

Question: If \[\sec \theta + \tan \theta = P\], then what is \[\cos \theta \] equal to?...

If secθ+tanθ=P\sec \theta + \tan \theta = P, then what is cosθ\cos \theta equal to?

Explanation

Solution

First we will convert the given equation into sinθ\sin \theta and cosθ\cos \theta . Then as we know that cos2θ+sin2θ=1{\cos ^2}\theta + {\sin ^2}\theta = 1, we will form a quadratic equation in sinθ\sin \theta . Then we will substitute sinθ=t\sin \theta = t to form a quadratic equation in tt. We will solve this quadratic equation to find tt and then we will substitute back t=sinθt = \sin \theta . Then using cosθ=1sin2θ\cos \theta = \sqrt {1 - {{\sin }^2}\theta } we will find the value of cosθ\cos \theta .

Complete step by step answer:
Given, secθ+tanθ=P\sec \theta + \tan \theta = P.
Converting the given equation into sinθ\sin \theta and cosθ\cos \theta , we get
1cosθ+sinθcosθ=P\Rightarrow \dfrac{1}{{\cos \theta }} + \dfrac{{\sin \theta }}{{\cos \theta }} = P
On taking the LCM, we get
1+sinθcosθ=P\Rightarrow \dfrac{{1 + \sin \theta }}{{\cos \theta }} = P
Multiplying cosθ\cos \theta on both the sides, we get
1+sinθ=Pcosθ\Rightarrow 1 + \sin \theta = P\cos \theta
Squaring both the sides, we get
(1+sinθ)2=(Pcosθ)2\Rightarrow {\left( {1 + \sin \theta } \right)^2} = {\left( {P\cos \theta } \right)^2}
On simplifying, we get
1+2sinθ+sin2θ=P2cos2θ(1)\Rightarrow 1 + 2\sin \theta + {\sin ^2}\theta = {P^2}{\cos ^2}\theta - - - (1)
As we know that cos2θ+sin2θ=1{\cos ^2}\theta + {\sin ^2}\theta = 1 i.e., cos2θ=1sin2θ{\cos ^2}\theta = 1 - {\sin ^2}\theta .
Using this in (1)(1), we get
1+2sinθ+sin2θ=P2(1sin2θ)\Rightarrow 1 + 2\sin \theta + {\sin ^2}\theta = {P^2}\left( {1 - {{\sin }^2}\theta } \right)
1+2sinθ+sin2θ=P2P2sin2θ\Rightarrow 1 + 2\sin \theta + {\sin ^2}\theta = {P^2} - {P^2}{\sin ^2}\theta
On simplifying, we get
(P2+1)sin2θ+2sinθ+1P2=0\Rightarrow \left( {{P^2} + 1} \right){\sin ^2}\theta + 2\sin \theta + 1 - {P^2} = 0
Let sinθ=t\sin \theta = t. So, we get
(P2+1)t2+2t+1P2=0\Rightarrow \left( {{P^2} + 1} \right){t^2} + 2t + 1 - {P^2} = 0
As we know that the roots of a quadratic equation ax2+bx+c=0a{x^2} + bx + c = 0 where a0a \ne 0 is given by x=b±b24ac2ax = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}.
Using this, we get
t=2±(2)24(P2+1)(1P2)2(P2+1)\Rightarrow t = \dfrac{{ - 2 \pm \sqrt {{{\left( 2 \right)}^2} - 4\left( {{P^2} + 1} \right)\left( {1 - {P^2}} \right)} }}{{2\left( {{P^2} + 1} \right)}}
Using the identity (a+b)(ab)=a2b2(a + b)(a - b) = {a^2} - {b^2}, we get
t=2±44(1P4)2(P2+1)\Rightarrow t = \dfrac{{ - 2 \pm \sqrt {4 - 4\left( {1 - {P^4}} \right)} }}{{2\left( {{P^2} + 1} \right)}}
Taking 44 common from the root, we get
t=2±21(1P4)2(P2+1)\Rightarrow t = \dfrac{{ - 2 \pm 2\sqrt {1 - \left( {1 - {P^4}} \right)} }}{{2\left( {{P^2} + 1} \right)}}
On simplification, we get
t=2±2P42(P2+1)\Rightarrow t = \dfrac{{ - 2 \pm 2\sqrt {{P^4}} }}{{2\left( {{P^2} + 1} \right)}}
Rewriting P4{P^4}as (P2)2{\left( {{P^2}} \right)^2}, we get
t=2±2(P2)22(P2+1)\Rightarrow t = \dfrac{{ - 2 \pm 2\sqrt {{{\left( {{P^2}} \right)}^2}} }}{{2\left( {{P^2} + 1} \right)}}
As (a)2=a\sqrt {{{\left( a \right)}^2}} = a. Using this, we get
t=2±2P22(P2+1)\Rightarrow t = \dfrac{{ - 2 \pm 2{P^2}}}{{2\left( {{P^2} + 1} \right)}}
Cancelling the common term from the numerator and the denominator, we get
t=1±P2P2+1\Rightarrow t = \dfrac{{ - 1 \pm {P^2}}}{{{P^2} + 1}}
t=1+P2P2+1\Rightarrow t = \dfrac{{ - 1 + {P^2}}}{{{P^2} + 1}} or t=1P2P2+1t = \dfrac{{ - 1 - {P^2}}}{{{P^2} + 1}}
On rewriting, we get
t=P21P2+1\Rightarrow t = \dfrac{{{P^2} - 1}}{{{P^2} + 1}} or t=(P2+1)P2+1t = \dfrac{{ - \left( {{P^2} + 1} \right)}}{{{P^2} + 1}}
On simplification, we get
t=P21P2+1\Rightarrow t = \dfrac{{{P^2} - 1}}{{{P^2} + 1}} or t=1t = - 1
Substituting sinθ=t\sin \theta = t, we get
sinθ=P21P2+1\Rightarrow \sin \theta = \dfrac{{{P^2} - 1}}{{{P^2} + 1}} or sinθ=1\sin \theta = - 1
Using cosθ=1sin2θ\cos \theta = \sqrt {1 - {{\sin }^2}\theta } .
When sinθ=P21P2+1\sin \theta = \dfrac{{{P^2} - 1}}{{{P^2} + 1}}.
cosθ=1(P21P2+1)2\Rightarrow \cos \theta = \sqrt {1 - {{\left( {\dfrac{{{P^2} - 1}}{{{P^2} + 1}}} \right)}^2}}
cosθ=1P42P2+1P4+2P2+1\Rightarrow \cos \theta = \sqrt {1 - \dfrac{{{P^4} - 2{P^2} + 1}}{{{P^4} + 2{P^2} + 1}}}
On taking the LCM, we get
cosθ=P4+2P2+1P4+2P21P4+2P2+1\Rightarrow \cos \theta = \sqrt {\dfrac{{{P^4} + 2{P^2} + 1 - {P^4} + 2{P^2} - 1}}{{{P^4} + 2{P^2} + 1}}}
cosθ=(2P)2(P2+1)2\Rightarrow \cos \theta = \sqrt {\dfrac{{{{\left( {2P} \right)}^2}}}{{{{\left( {{P^2} + 1} \right)}^2}}}}
On simplifying, we get
cosθ=2PP2+1\Rightarrow \cos \theta = \dfrac{{2P}}{{{P^2} + 1}}
When sinθ=1\sin \theta = - 1.
cosθ=1(1)2\Rightarrow \cos \theta = \sqrt {1 - {{\left( { - 1} \right)}^2}}
cosθ=0\Rightarrow \cos \theta = 0
But, cosθ=0\cos \theta = 0 and we know that tanθ\tan \theta is undefined at all points where cosθ=0\cos \theta = 0 i.e., at θ=(2n+1)π2\theta = \left( {2n + 1} \right)\dfrac{\pi }{2}.
cosθ0\therefore \cos \theta \ne 0
Therefore, cosθ\cos \theta is equal to 2PP2+1\dfrac{{2P}}{{{P^2} + 1}}.

Note:
We can also solve this problem by another method.
As we know, sec2θtan2θ=1{\sec ^2}\theta - {\tan ^2}\theta = 1.
(secθtanθ)(secθ+tanθ)=1(1)\Rightarrow \left( {\sec \theta - \tan \theta } \right)\left( {\sec \theta + \tan \theta } \right) = 1 - - - (1)
Given, secθ+tanθ=P\sec \theta + \tan \theta = P. Using this, we get
(secθtanθ)P=1\Rightarrow \left( {\sec \theta - \tan \theta } \right)P = 1
secθtanθ=1P(2)\Rightarrow \sec \theta - \tan \theta = \dfrac{1}{P} - - - (2)
Putting (2)(2) in (1)(1), we get
1P×(secθ+tanθ)=1\Rightarrow \dfrac{1}{P} \times \left( {\sec \theta + \tan \theta } \right) = 1
secθ+tanθ=P(3)\Rightarrow \sec \theta + \tan \theta = P - - - (3)
Adding (2)(2) and (3)(3), we get
secθtanθ+secθ+tanθ=1P+P\Rightarrow \sec \theta - \tan \theta + \sec \theta + \tan \theta = \dfrac{1}{P} + P
2secθ=1P+P\Rightarrow 2\sec \theta = \dfrac{1}{P} + P
Taking the LCM on RHS, we get
2secθ=1+P2P\Rightarrow 2\sec \theta = \dfrac{{1 + {P^2}}}{P}
Dividing both the sides by 22, we get
secθ=1+P22P\Rightarrow \sec \theta = \dfrac{{1 + {P^2}}}{{2P}}
As secθ=1cosθ\sec \theta = \dfrac{1}{{\cos \theta }}, we get
1cosθ=1+P22P\Rightarrow \dfrac{1}{{\cos \theta }} = \dfrac{{1 + {P^2}}}{{2P}}
On simplifying, we get
cosθ=2P1+P2\Rightarrow \cos \theta = \dfrac{{2P}}{{1 + {P^2}}}
Therefore, cosθ\cos \theta equal to 2PP2+1\dfrac{{2P}}{{{P^2} + 1}}.