Solveeit Logo

Question

Question: If \[\sec \theta + \tan \theta = p\], prove that \[\dfrac{{{p^2} - 1}}{{{p^2} + 1}} = \sin \theta \]...

If secθ+tanθ=p\sec \theta + \tan \theta = p, prove that p21p2+1=sinθ\dfrac{{{p^2} - 1}}{{{p^2} + 1}} = \sin \theta

Explanation

Solution

We use the trigonometric identity of sec2θtan2θ=1{\sec ^2}\theta - {\tan ^2}\theta = 1and open this identity using another identity (a+b)(ab)=a2b2(a + b)(a - b) = {a^2} - {b^2}. Substitute the given value in the equation and write the remaining value in terms of p. Add the two equations formed in terms of secant and tangent. Calculate the value of cosine of angle and use the identity sin2θ=1cos2θ{\sin ^2}\theta = 1 - {\cos ^2}\theta to calculate the value of sine of angle in terms of p.

Complete step-by-step solution:
We are given that (secθ+tanθ)=p\left( {\sec \theta + \tan \theta } \right) = p...................… (1)
Since we know that sec2θtan2θ=1{\sec ^2}\theta - {\tan ^2}\theta = 1
Then we can open this identity using another identity (a+b)(ab)=a2b2(a + b)(a - b) = {a^2} - {b^2}
sec2θtan2θ=(secθtanθ)(secθ+tanθ)\Rightarrow {\sec ^2}\theta - {\tan ^2}\theta = (\sec \theta - \tan \theta )(\sec \theta + \tan \theta )
Substitute the value of secθ+tanθ=p\sec \theta + \tan \theta = p in right hand side from equation (1)
sec2θtan2θ=p(secθtanθ)\Rightarrow {\sec ^2}\theta - {\tan ^2}\theta = p(\sec \theta - \tan \theta )
Substitute the value of sec2θtan2θ=1{\sec ^2}\theta - {\tan ^2}\theta = 1in left hand side of the equation
1=p(secθtanθ)\Rightarrow 1 = p(\sec \theta - \tan \theta )
Divide both sides by p
1p=(secθtanθ)\Rightarrow \dfrac{1}{p} = (\sec \theta - \tan \theta )...............… (2)
Add equations (1) and (2)
(secθ+tanθ)+(secθtanθ)=p+1p\Rightarrow \left( {\sec \theta + \tan \theta } \right) + (\sec \theta - \tan \theta ) = p + \dfrac{1}{p}
Cancel same terms with opposite signs from left hand side of the equation
2secθ=p+1p\Rightarrow 2\sec \theta = p + \dfrac{1}{p}
Take LCM in right hand side of the equation
2secθ=p2+1p\Rightarrow 2\sec \theta = \dfrac{{{p^2} + 1}}{p}
Divide both sides by 2
secθ=p2+12p\Rightarrow \sec \theta = \dfrac{{{p^2} + 1}}{{2p}}
Substitute the value of secθ=1cosθ\sec \theta = \dfrac{1}{{\cos \theta }}in left hand side of the equation
1cosθ=p2+12p\Rightarrow \dfrac{1}{{\cos \theta }} = \dfrac{{{p^2} + 1}}{{2p}}
Take reciprocal on both sides of the equation
cosθ=2p1+p2\Rightarrow \cos \theta = \dfrac{{2p}}{{1 + {p^2}}} … (3)
Now we know that sin2θ=1cos2θ{\sin ^2}\theta = 1 - {\cos ^2}\theta then we can take square root on both sides of the equation and write
sin2θ=1cos2θ\Rightarrow \sqrt {{{\sin }^2}\theta } = \sqrt {1 - {{\cos }^2}\theta }
Cancel square root by square power in left hand side of the equation
sinθ=1cos2θ\Rightarrow \sin \theta = \sqrt {1 - {{\cos }^2}\theta }
Substitute value of cosine from equation (3) in right hand side of the equation
sinθ=1(2p1+p2)2\Rightarrow \sin \theta = \sqrt {1 - {{\left( {\dfrac{{2p}}{{1 + {p^2}}}} \right)}^2}}
Solve the term in under root
sinθ=14p21+p4+2p2\Rightarrow \sin \theta = \sqrt {1 - \dfrac{{4{p^2}}}{{1 + {p^4} + 2{p^2}}}}
Take LCM of terms in square root
sinθ=1+p4+2p24p21+p4+2p2\Rightarrow \sin \theta = \sqrt {\dfrac{{1 + {p^4} + 2{p^2} - 4{p^2}}}{{1 + {p^4} + 2{p^2}}}}
sinθ=1+p42p21+p4+2p2\Rightarrow \sin \theta = \sqrt {\dfrac{{1 + {p^4} - 2{p^2}}}{{1 + {p^4} + 2{p^2}}}}
We can pair the terms in numerator using the identity (ab)2=a2+b22ab{(a - b)^2} = {a^2} + {b^2} - 2aband denominator using the identity (a+b)2=a2+b2+2ab{(a + b)^2} = {a^2} + {b^2} + 2ab
sinθ=(p21)2(p2+1)2\Rightarrow \sin \theta = \sqrt {\dfrac{{{{({p^2} - 1)}^2}}}{{{{({p^2} + 1)}^2}}}}
Cancel square root by square power in right hand side of the equation
sinθ=p21p2+1\Rightarrow \sin \theta = \dfrac{{{p^2} - 1}}{{{p^2} + 1}}
\therefore The value of p21p2+1=sinθ\dfrac{{{p^2} - 1}}{{{p^2} + 1}} = \sin \theta
Hence Proved

Note: Alternate method:
We directly substitute the value of p in the equation p21p2+1=sinθ\dfrac{{{p^2} - 1}}{{{p^2} + 1}} = \sin \theta
(secθ+tanθ)21(secθ+tanθ)2+1=sinθ\Rightarrow \dfrac{{{{(\sec \theta + \tan \theta )}^2} - 1}}{{{{(\sec \theta + \tan \theta )}^2} + 1}} = \sin \theta
Substitute the value of secθ=1cosθ;tanθ=sinθcosθ\sec \theta = \dfrac{1}{{\cos \theta }};\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}
(1cosθ+sinθcosθ)21(1cosθ+sinθcosθ)2+1=sinθ\Rightarrow \dfrac{{{{(\dfrac{1}{{\cos \theta }} + \dfrac{{\sin \theta }}{{\cos \theta }})}^2} - 1}}{{{{(\dfrac{1}{{\cos \theta }} + \dfrac{{\sin \theta }}{{\cos \theta }})}^2} + 1}} = \sin \theta
Take LCM in the bracket
(1+sinθcosθ)21(1+sinθcosθ)2+1=sinθ\Rightarrow \dfrac{{{{(\dfrac{{1 + \sin \theta }}{{\cos \theta }})}^2} - 1}}{{{{(\dfrac{{1 + \sin \theta }}{{\cos \theta }})}^2} + 1}} = \sin \theta
Square the terms in numerator and denominator
1+sin2θ+2sinθcos2θcos2θ1+sin2θ+2sinθ+cos2θcos2θ=sinθ\Rightarrow \dfrac{{\dfrac{{1 + {{\sin }^2}\theta + 2\sin \theta - {{\cos }^2}\theta }}{{{{\cos }^2}\theta }}}}{{\dfrac{{1 + {{\sin }^2}\theta + 2\sin \theta + {{\cos }^2}\theta }}{{{{\cos }^2}\theta }}}} = \sin \theta
Write LHS of the equation in simpler form
1+sin2θ+2sinθcos2θcos2θ×cos2θ1+sin2θ+2sinθ+cos2θ=sinθ\Rightarrow \dfrac{{1 + {{\sin }^2}\theta + 2\sin \theta - {{\cos }^2}\theta }}{{{{\cos }^2}\theta }} \times \dfrac{{{{\cos }^2}\theta }}{{1 + {{\sin }^2}\theta + 2\sin \theta + {{\cos }^2}\theta }} = \sin \theta
Cancel same terms from numerator and denominator in left hand side of the equation
1+sin2θ+2sinθcos2θ1+sin2θ+2sinθ+cos2θ=sinθ\Rightarrow \dfrac{{1 + {{\sin }^2}\theta + 2\sin \theta - {{\cos }^2}\theta }}{{1 + {{\sin }^2}\theta + 2\sin \theta + {{\cos }^2}\theta }} = \sin \theta
Substitute cos2θ=1sin2θ{\cos ^2}\theta = 1 - {\sin ^2}\theta in both numerator and denominator in left hand side of the equation
1+sin2θ+2sinθ(1sin2θ)1+sin2θ+2sinθ+(1sin2θ)=sinθ\Rightarrow \dfrac{{1 + {{\sin }^2}\theta + 2\sin \theta - (1 - {{\sin }^2}\theta )}}{{1 + {{\sin }^2}\theta + 2\sin \theta + (1 - {{\sin }^2}\theta )}} = \sin \theta
1+sin2θ+2sinθ1+sin2θ1+sin2θ+2sinθ+1sin2θ=sinθ\Rightarrow \dfrac{{1 + {{\sin }^2}\theta + 2\sin \theta - 1 + {{\sin }^2}\theta }}{{1 + {{\sin }^2}\theta + 2\sin \theta + 1 - {{\sin }^2}\theta }} = \sin \theta
Add same terms
2sin2θ+2sinθ2+2sinθ=sinθ\Rightarrow \dfrac{{2{{\sin }^2}\theta + 2\sin \theta }}{{2 + 2\sin \theta }} = \sin \theta
Take 2sinθ2\sin \theta common from numerator and 2 from denominator
2sinθ(sinθ+1)2(1+sinθ)=sinθ\Rightarrow \dfrac{{2\sin \theta (\sin \theta + 1)}}{{2(1 + \sin \theta )}} = \sin \theta
Cancel same factors from numerator and denominator in left hand side of the equation
sinθ=sinθ\Rightarrow \sin \theta = \sin \theta
LHS is equal to RHS
Hence proved