Question
Question: If \[\sec \theta + \tan \theta = p\], prove that \[\dfrac{{{p^2} - 1}}{{{p^2} + 1}} = \sin \theta \]...
If secθ+tanθ=p, prove that p2+1p2−1=sinθ
Solution
We use the trigonometric identity of sec2θ−tan2θ=1and open this identity using another identity (a+b)(a−b)=a2−b2. Substitute the given value in the equation and write the remaining value in terms of p. Add the two equations formed in terms of secant and tangent. Calculate the value of cosine of angle and use the identity sin2θ=1−cos2θ to calculate the value of sine of angle in terms of p.
Complete step-by-step solution:
We are given that (secθ+tanθ)=p...................… (1)
Since we know that sec2θ−tan2θ=1
Then we can open this identity using another identity (a+b)(a−b)=a2−b2
⇒sec2θ−tan2θ=(secθ−tanθ)(secθ+tanθ)
Substitute the value of secθ+tanθ=p in right hand side from equation (1)
⇒sec2θ−tan2θ=p(secθ−tanθ)
Substitute the value of sec2θ−tan2θ=1in left hand side of the equation
⇒1=p(secθ−tanθ)
Divide both sides by p
⇒p1=(secθ−tanθ)...............… (2)
Add equations (1) and (2)
⇒(secθ+tanθ)+(secθ−tanθ)=p+p1
Cancel same terms with opposite signs from left hand side of the equation
⇒2secθ=p+p1
Take LCM in right hand side of the equation
⇒2secθ=pp2+1
Divide both sides by 2
⇒secθ=2pp2+1
Substitute the value of secθ=cosθ1in left hand side of the equation
⇒cosθ1=2pp2+1
Take reciprocal on both sides of the equation
⇒cosθ=1+p22p … (3)
Now we know that sin2θ=1−cos2θthen we can take square root on both sides of the equation and write
⇒sin2θ=1−cos2θ
Cancel square root by square power in left hand side of the equation
⇒sinθ=1−cos2θ
Substitute value of cosine from equation (3) in right hand side of the equation
⇒sinθ=1−(1+p22p)2
Solve the term in under root
⇒sinθ=1−1+p4+2p24p2
Take LCM of terms in square root
⇒sinθ=1+p4+2p21+p4+2p2−4p2
⇒sinθ=1+p4+2p21+p4−2p2
We can pair the terms in numerator using the identity (a−b)2=a2+b2−2aband denominator using the identity (a+b)2=a2+b2+2ab
⇒sinθ=(p2+1)2(p2−1)2
Cancel square root by square power in right hand side of the equation
⇒sinθ=p2+1p2−1
∴The value of p2+1p2−1=sinθ
Hence Proved
Note: Alternate method:
We directly substitute the value of p in the equation p2+1p2−1=sinθ
⇒(secθ+tanθ)2+1(secθ+tanθ)2−1=sinθ
Substitute the value of secθ=cosθ1;tanθ=cosθsinθ
⇒(cosθ1+cosθsinθ)2+1(cosθ1+cosθsinθ)2−1=sinθ
Take LCM in the bracket
⇒(cosθ1+sinθ)2+1(cosθ1+sinθ)2−1=sinθ
Square the terms in numerator and denominator
⇒cos2θ1+sin2θ+2sinθ+cos2θcos2θ1+sin2θ+2sinθ−cos2θ=sinθ
Write LHS of the equation in simpler form
⇒cos2θ1+sin2θ+2sinθ−cos2θ×1+sin2θ+2sinθ+cos2θcos2θ=sinθ
Cancel same terms from numerator and denominator in left hand side of the equation
⇒1+sin2θ+2sinθ+cos2θ1+sin2θ+2sinθ−cos2θ=sinθ
Substitute cos2θ=1−sin2θin both numerator and denominator in left hand side of the equation
⇒1+sin2θ+2sinθ+(1−sin2θ)1+sin2θ+2sinθ−(1−sin2θ)=sinθ
⇒1+sin2θ+2sinθ+1−sin2θ1+sin2θ+2sinθ−1+sin2θ=sinθ
Add same terms
⇒2+2sinθ2sin2θ+2sinθ=sinθ
Take 2sinθcommon from numerator and 2 from denominator
⇒2(1+sinθ)2sinθ(sinθ+1)=sinθ
Cancel same factors from numerator and denominator in left hand side of the equation
⇒sinθ=sinθ
LHS is equal to RHS
Hence proved