Solveeit Logo

Question

Question: If \(\sec \theta + \tan \theta = p\), obtain the value of \(\sec \theta ,\tan \theta ,\sin \theta \)...

If secθ+tanθ=p\sec \theta + \tan \theta = p, obtain the value of secθ,tanθ,sinθ\sec \theta ,\tan \theta ,\sin \theta in terms of p.

Explanation

Solution

Hint: Here we use the trigonometry identities and formulae to obtain the values.

“Complete step-by-step answer:”
As we know sec2θtan2θ=1{\sec ^2}\theta - {\tan ^2}\theta = 1then
(secθ+tanθ)(secθtanθ)=1 (secθtanθ)=1(secθ+tanθ) (secθtanθ)=1p(1) [(secθtanθ)=p] (secθ+tanθ)=p(2)  (\sec \theta + \tan \theta )(\sec \theta - \tan \theta ) = 1 \\\ (\sec \theta - \tan \theta ) = \dfrac{1}{{(\sec \theta + \tan \theta )}} \\\ (\sec \theta - \tan \theta ) = \dfrac{1}{p} \to (1){\text{ [}}\because (\sec \theta - \tan \theta ) = p] \\\ (\sec \theta + \tan \theta ) = p \to (2) \\\
Now add equation (1) and (2) we get
secθ=12(p2+1p)\sec \theta = \dfrac{1}{2}\left( {\dfrac{{{p^2} + 1}}{p}} \right)
Now subtract equation (1) and (2) we get
tanθ=12(p21p)\tan \theta = \dfrac{1}{2}\left( {\dfrac{{{p^2} - 1}}{p}} \right)
From the values of secθ\sec \theta andtanθ\tan \theta , we know tanθsecθ=sinθ\dfrac{{\tan \theta }}{{\sec \theta }} = \sin \theta
Therefore, sinθ=p21p2+1\sin \theta = \dfrac{{{p^2} - 1}}{{{p^2} + 1}}.
Hence, we get the answer.

Note: Whenever such type of questions are always try to start the question with use of the trigonometric identities and use some algebraic formula to find the answer as we know (a2b2)=(a+b)(ab)({a^2} - {b^2}) = (a + b)(a - b) that we apply in the question to solve it.