Solveeit Logo

Question

Question: If \( \sec \theta + \tan \theta = \dfrac{1}{5} \) , then the value of \( \sin \theta \) is: \( ...

If secθ+tanθ=15\sec \theta + \tan \theta = \dfrac{1}{5} , then the value of sinθ\sin \theta is:
(1)1213 (2)1213 (3)±1213 (4)512  (1)\,\,\,\dfrac{{12}}{{13}} \\\ (2)\,\, - \dfrac{{12}}{{13}} \\\ (3)\,\, \pm \dfrac{{12}}{{13}} \\\ (4)\,\,\dfrac{5}{{12}} \\\

Explanation

Solution

Hint : To find required value we use trigonometry identity and then expanding it using algebraic identity and then simplifying it by substituting given value to form another equation which on solving with given equation gives out value of tanθandsecθ\tan \theta \,\,and\,\,\sec \theta and then using these we can find value of required sinθ\sin \theta .
Formulas used: sec2θtan2θ=1{\sec ^2}\theta - {\tan ^2}\theta = 1

Complete step-by-step answer :
To find the required value of sinθ\sin \theta . We consider trigonometric identity:
sec2θtan2θ=1{\sec ^2}\theta - {\tan ^2}\theta = 1
Simplifying left hand side using algebraic identity. We have,
(secθ+tanθ)(secθtanθ)=1\left( {\sec \theta + \tan \theta } \right)\left( {\sec \theta - \tan \theta } \right) = 1
But it is given secθ+tanθ=15\sec \theta + \tan \theta = \dfrac{1}{5} ……….(i)
Substituting value in above equation. We have
15(secθtanθ)=1 secθtanθ=5.....................(ii)   \dfrac{1}{5}\left( {\sec \theta - \tan \theta } \right) = 1 \\\ \Rightarrow \sec \theta - \tan \theta = 5.....................(ii) \;
Adding equation (i) and (ii) formed above
2secθ=15+5 2secθ=1+255 2secθ=265 secθ=265×12 secθ=135   2\sec \theta = \dfrac{1}{5} + 5 \\\ \Rightarrow 2\sec \theta = \dfrac{{1 + 25}}{5} \\\ \Rightarrow 2\sec \theta = \dfrac{{26}}{5} \\\ \Rightarrow \sec \theta = \dfrac{{26}}{5} \times \dfrac{1}{2} \\\ \Rightarrow \sec \theta = \dfrac{{13}}{5} \;
Substituting secθ=135\sec \theta = \dfrac{{13}}{5} in equation (i). We have
135+tanθ=15 tanθ=15135 tanθ=1135 tanθ=125   \dfrac{{13}}{5} + \tan \theta = \dfrac{1}{5} \\\ \Rightarrow \tan \theta = \dfrac{1}{5} - \dfrac{{13}}{5} \\\ \Rightarrow \tan \theta = \dfrac{{1 - 13}}{5} \\\ \Rightarrow \tan \theta = - \dfrac{{12}}{5} \;
Now, dividing value tanθwithvalueofsecθcalculatedinabove.\tan \theta \,\,with\,\,value\,\,of\,\,\sec \theta \,\,calculated\,\,in\,\,above.
tanθsecθ=125135 sinθcosθ1cosθ=125×513 sinθ=1213   \Rightarrow \dfrac{{\tan \theta }}{{\sec \theta }} = \dfrac{{ - \dfrac{{12}}{5}}}{{\dfrac{{13}}{5}}} \\\ \Rightarrow \dfrac{{\dfrac{{\sin \theta }}{{\cos \theta }}}}{{\dfrac{1}{{\cos \theta }}}} = - \dfrac{{12}}{5} \times \dfrac{5}{{13}} \\\ \Rightarrow \sin \theta = - \dfrac{{12}}{{13}} \;
Therefore, from above we see that the value of sinθis1213\sin \theta \,\,is\,\, - \dfrac{{12}}{{13}} .
So, the correct answer is “ 1213\dfrac{{-12}}{{13}} ”.

Note : We can also find the required value from a given function in another way. In this we first convert given trigonometric function in term of sinθandcosθ\sin \theta \,\,and\,\cos \theta and then squaring both side and converting in term of sinθ\sin \theta to form quadratic equation and then solving quadratic so formed to get value of sinθ\sin \theta and hence required solution of given problem.