Solveeit Logo

Question

Mathematics Question on Trigonometric Identities

If secθ=m\sec \theta=m and tanθ=n\tan \theta=n , then 1m[(m+n)+1(m+n)]\frac{1}{m}\left[(m+n)+\frac{1}{(m+n)}\right] is :

A

2

B

2 m

C

2 n

D

mn

Answer

2

Explanation

Solution

Given that secθ=mtanθ=n\sec\theta =m \tan\theta = n
1m[(m+n)+1(m+n)]\therefore \frac{1}{m} \left[\left(m+n\right) + \frac{1}{\left(m+n\right)}\right]
=1secθ[secθ+tanθ+1secθ+tanθ]= \frac{1}{\sec\theta} \left[\sec\theta + \tan\theta + \frac{1}{\sec\theta +\tan \theta}\right]
=[sec2θ+tan2θ+2secθtanθ+1]secθ(secθ+tanθ)= \frac{\left[\sec^{2} \theta + \tan^{2} \theta +2 \sec\theta \tan\theta+1\right]}{\sec\theta\left(\sec\theta +\tan\theta\right)}
=2sec2θ+2secθtanθsecθ(secθ+tanθ)= \frac{2 \sec^{2} \theta + 2 \sec\theta \tan \theta}{\sec\theta \left(\sec\theta + \tan \theta\right)}
=2secθ(secθ+tanθ)secθ(secθ+tanθ)= \frac{2 \sec\theta \left(\sec \theta + \tan \theta\right)}{\sec \theta \left(\sec\theta + \tan \theta\right)}
=2= 2