Question
Mathematics Question on Continuity and differentiability
If sec(x2+1x2−2x)=y, then dxdy is equal to
A
x2y2
B
(x2+1)22yy2−1(x2+x−1)
C
yy2−1(x2+x−1)
D
x2+y2x2−y2
Answer
(x2+1)22yy2−1(x2+x−1)
Explanation
Solution
y=sec(x2+1x2−2x) ⇒dxdy=sec(x2+1x2−2x)tan(x2+1x2−2x). \left\\{\frac{\left(x^{2}+1\right)\left(2x-2\right)-\left(x^{2}-2x\right)\left(2x\right)}{\left(x^{2}+1\right)^{2}}\right\\} =sec(x2+1x2−2x)tan(x2+1x2−2x)⋅(x2+1)22x2+2x−2 ⇒dxdy=(x2+1)22yy2−1(x2+x−1)