Solveeit Logo

Question

Mathematics Question on Trigonometric Functions

If secα\sec \, \alpha and cosecαcosec \, \alpha are the roots of the equation x2px+q=0,x^2 - px + q = 0, then

A

p2=p+2qp^2 = p + 2q

B

q2=p+2qq^2 = p + 2q

C

p2=q(q+2)p^2 = q(q +2)

D

q2=p(p+2)q^2 = p(p + 2)

Answer

p2=q(q+2)p^2 = q(q +2)

Explanation

Solution

secα+cosecα=(p)=p\sec\alpha + cosec \alpha =- \left(-p\right) = p Alsosecαcosecα=q \text{Also} \, \sec\alpha \, cosec \alpha = q sinαcosα=1q\Rightarrow \sin\alpha \cos\alpha = \frac{1}{q} From (1) and (2) sinα+cosα=psinαcosα=pq\sin\alpha + \cos\alpha = p \sin\alpha \cos\alpha = \frac{p}{q} squaring, we get 1+2sinαcosα=p2q21+2q=p2q21 + 2 \sin\alpha \cos\alpha = \frac{p^{2}}{q^{2}} \Rightarrow 1 + \frac{2}{q} =\frac{p^{2}}{q^{2}} p2=q(q+2)\Rightarrow p^{2} = q\left(q+2\right)