Solveeit Logo

Question

Question: If \(\sec A=\dfrac{17}{8}\) , show that \(\dfrac{3-4{{\sin }^{2}}A}{4{{\cos }^{2}}A-3}=\dfrac{3-{{\t...

If secA=178\sec A=\dfrac{17}{8} , show that 34sin2A4cos2A3=3tan2A13tan2A\dfrac{3-4{{\sin }^{2}}A}{4{{\cos }^{2}}A-3}=\dfrac{3-{{\tan }^{2}}A}{1-3{{\tan }^{2}}A}.

Explanation

Solution

Hint:For solving this question, we will use the formulas like tan2θ=sec2θ1{{\tan }^{2}}\theta ={{\sec }^{2}}\theta -1 , cosθ=1secθ\cos \theta =\dfrac{1}{\sec \theta } and sin2θ=1cos2θ{{\sin }^{2}}\theta =1-{{\cos }^{2}}\theta to calculate the value of tan2A{{\tan }^{2}}A , cos2A{{\cos }^{2}}A and sin2A{{\sin }^{2}}A separately. After that, we will calculate the value of the term on the left-hand side and right-hand side separately and show that, if secA=178\sec A=\dfrac{17}{8} , then 34sin2A4cos2A3=3tan2A13tan2A\dfrac{3-4{{\sin }^{2}}A}{4{{\cos }^{2}}A-3}=\dfrac{3-{{\tan }^{2}}A}{1-3{{\tan }^{2}}A}.

Complete step-by-step answer:
Given:
It is given that, if secA=178\sec A=\dfrac{17}{8} and we have to show that 34sin2A4cos2A3=3tan2A13tan2A\dfrac{3-4{{\sin }^{2}}A}{4{{\cos }^{2}}A-3}=\dfrac{3-{{\tan }^{2}}A}{1-3{{\tan }^{2}}A} .
Now, we will calculate the value of the term on the left-hand side and prove that it is equal to the value of the term on the right-hand side.
Now, before we proceed we should know the following formulas:
tan2θ=sec2θ1................(1) cosθ=1secθ.......................(2) sin2θ=1cos2θ................(3) \begin{aligned} & {{\tan }^{2}}\theta ={{\sec }^{2}}\theta -1................\left( 1 \right) \\\ & \cos \theta =\dfrac{1}{\sec \theta }.......................\left( 2 \right) \\\ & {{\sin }^{2}}\theta =1-{{\cos }^{2}}\theta ................\left( 3 \right) \\\ \end{aligned}
Now, we will use the above three formulas to calculate the value of tan2A{{\tan }^{2}}A , cos2A{{\cos }^{2}}A and sin2A{{\sin }^{2}}A separately.
Calculation for tan2A{{\tan }^{2}}A :
Now, we will use the formula from the equation (1) to write tan2A=sec2A1{{\tan }^{2}}A={{\sec }^{2}}A-1 and we can put secA=178\sec A=\dfrac{17}{8} in it. Then,
tan2A=sec2A1 tan2A=(178)21 tan2A=289641 tan2A=22564................(4) \begin{aligned} & {{\tan }^{2}}A={{\sec }^{2}}A-1 \\\ & \Rightarrow {{\tan }^{2}}A={{\left( \dfrac{17}{8} \right)}^{2}}-1 \\\ & \Rightarrow {{\tan }^{2}}A=\dfrac{289}{64}-1 \\\ & \Rightarrow {{\tan }^{2}}A=\dfrac{225}{64}................\left( 4 \right) \\\ \end{aligned}

Calculation for cos2A{{\cos }^{2}}A :
Now, we will use the formula from the equation (2) to write cosA=1secA\cos A=\dfrac{1}{\sec A} and we can put secA=178\sec A=\dfrac{17}{8} in it. Then,
cosA=1secA cosA=817 cos2A=(817)2 cos2A=64289................(5) \begin{aligned} & \cos A=\dfrac{1}{\sec A} \\\ & \Rightarrow \cos A=\dfrac{8}{17} \\\ & \Rightarrow {{\cos }^{2}}A={{\left( \dfrac{8}{17} \right)}^{2}} \\\ & \Rightarrow {{\cos }^{2}}A=\dfrac{64}{289}................\left( 5 \right) \\\ \end{aligned}
Calculation for sin2A{{\sin }^{2}}A :
Now, we will use the formula from the equation (3) to write sin2A=1cos2A{{\sin }^{2}}A=1-{{\cos }^{2}}A and we can put cos2A=64289{{\cos }^{2}}A=\dfrac{64}{289} in it from equation (5). Then,
sin2A=1cos2A sin2A=164289 sin2A=225289................(6) \begin{aligned} & {{\sin }^{2}}A=1-{{\cos }^{2}}A \\\ & \Rightarrow {{\sin }^{2}}A=1-\dfrac{64}{289} \\\ & \Rightarrow {{\sin }^{2}}A=\dfrac{225}{289}................\left( 6 \right) \\\ \end{aligned}
Now, we will use the above results to calculate the value of the term on the left-hand side and right-hand side separately.
Calculation for 34sin2A4cos2A3\dfrac{3-4{{\sin }^{2}}A}{4{{\cos }^{2}}A-3} :
Now, we will directly substitute sin2A=225289{{\sin }^{2}}A=\dfrac{225}{289} from equation (6) and cos2A=64289{{\cos }^{2}}A=\dfrac{64}{289} from equation (5) in the term 34sin2A4cos2A3\dfrac{3-4{{\sin }^{2}}A}{4{{\cos }^{2}}A-3} . Then,
34sin2A4cos2A3 34sin2A4cos2A3=34×2252894×642893 \begin{aligned} & \dfrac{3-4{{\sin }^{2}}A}{4{{\cos }^{2}}A-3} \\\ & \Rightarrow \dfrac{3-4{{\sin }^{2}}A}{4{{\cos }^{2}}A-3}=\dfrac{3-4\times \dfrac{225}{289}}{4\times \dfrac{64}{289}-3} \\\ \end{aligned}
Now, we will multiply the numerator and denominator by 289289 in the above equation. Then,
34sin2A4cos2A3=34×2252894×642893 34sin2A4cos2A3=3×2894×2254×643×289 34sin2A4cos2A3=867900256867 34sin2A4cos2A3=33611 34sin2A4cos2A3=33611...................(7) \begin{aligned} & \dfrac{3-4{{\sin }^{2}}A}{4{{\cos }^{2}}A-3}=\dfrac{3-4\times \dfrac{225}{289}}{4\times \dfrac{64}{289}-3} \\\ & \Rightarrow \dfrac{3-4{{\sin }^{2}}A}{4{{\cos }^{2}}A-3}=\dfrac{3\times 289-4\times 225}{4\times 64-3\times 289} \\\ & \Rightarrow \dfrac{3-4{{\sin }^{2}}A}{4{{\cos }^{2}}A-3}=\dfrac{867-900}{256-867} \\\ & \Rightarrow \dfrac{3-4{{\sin }^{2}}A}{4{{\cos }^{2}}A-3}=\dfrac{-33}{-611} \\\ & \Rightarrow \dfrac{3-4{{\sin }^{2}}A}{4{{\cos }^{2}}A-3}=\dfrac{33}{611}...................\left( 7 \right) \\\ \end{aligned}
Calculation for 3tan2A13tan2A\dfrac{3-{{\tan }^{2}}A}{1-3{{\tan }^{2}}A} :
Now, we will directly substitute tan2A=22564{{\tan }^{2}}A=\dfrac{225}{64} from equation (4) in the term 3tan2A13tan2A\dfrac{3-{{\tan }^{2}}A}{1-3{{\tan }^{2}}A} . Then,
3tan2A13tan2A 3tan2A13tan2A=32256413×22564 \begin{aligned} & \dfrac{3-{{\tan }^{2}}A}{1-3{{\tan }^{2}}A} \\\ & \Rightarrow \dfrac{3-{{\tan }^{2}}A}{1-3{{\tan }^{2}}A}=\dfrac{3-\dfrac{225}{64}}{1-3\times \dfrac{225}{64}} \\\ \end{aligned}
Now, we will multiply the numerator and denominator by 6464 in the above equation. Then,
3tan2A13tan2A=32256413×22564 3tan2A13tan2A=3×64225643×225 3tan2A13tan2A=19222564675 3tan2A13tan2A=33611 3tan2A13tan2A=33611...................(8) \begin{aligned} & \dfrac{3-{{\tan }^{2}}A}{1-3{{\tan }^{2}}A}=\dfrac{3-\dfrac{225}{64}}{1-3\times \dfrac{225}{64}} \\\ & \Rightarrow \dfrac{3-{{\tan }^{2}}A}{1-3{{\tan }^{2}}A}=\dfrac{3\times 64-225}{64-3\times 225} \\\ & \Rightarrow \dfrac{3-{{\tan }^{2}}A}{1-3{{\tan }^{2}}A}=\dfrac{192-225}{64-675} \\\ & \Rightarrow \dfrac{3-{{\tan }^{2}}A}{1-3{{\tan }^{2}}A}=\dfrac{-33}{-611} \\\ & \Rightarrow \dfrac{3-{{\tan }^{2}}A}{1-3{{\tan }^{2}}A}=\dfrac{33}{611}...................\left( 8 \right) \\\ \end{aligned}
Now, we can equate the result of the equation (7) and (8). Then,
34sin2A4cos2A3=3tan2A13tan2A\dfrac{3-4{{\sin }^{2}}A}{4{{\cos }^{2}}A-3}=\dfrac{3-{{\tan }^{2}}A}{1-3{{\tan }^{2}}A}
Thus, if secA=178\sec A=\dfrac{17}{8} , then 34sin2A4cos2A3=3tan2A13tan2A\dfrac{3-4{{\sin }^{2}}A}{4{{\cos }^{2}}A-3}=\dfrac{3-{{\tan }^{2}}A}{1-3{{\tan }^{2}}A} .
Hence, proved.

Note: Here, the student should apply every trigonometric formula correctly and proceed in a stepwise manner to prove the desired result easily. Moreover, we could have proved it without any given data also by multiplying the numerator and denominator of the term 34sin2A4cos2A3\dfrac{3-4{{\sin }^{2}}A}{4{{\cos }^{2}}A-3} by sec2A{{\sec }^{2}}A as given below:
34sin2A4cos2A3 34sin2A4cos2A3=3sec2A4sec2Asin2A4sec2Acos2A3sec2A \begin{aligned} & \dfrac{3-4{{\sin }^{2}}A}{4{{\cos }^{2}}A-3} \\\ & \Rightarrow \dfrac{3-4{{\sin }^{2}}A}{4{{\cos }^{2}}A-3}=\dfrac{3{{\sec }^{2}}A-4{{\sec }^{2}}A{{\sin }^{2}}A}{4{{\sec }^{2}}A{{\cos }^{2}}A-3{{\sec }^{2}}A} \\\ \end{aligned}
Now, we can write sec2Asin2A=tan2A{{\sec }^{2}}A{{\sin }^{2}}A={{\tan }^{2}}A and sec2Acos2A=1{{\sec }^{2}}A{{\cos }^{2}}A=1 in the above equation. Then,
34sin2A4cos2A3=3sec2A4sec2Asin2A4sec2Acos2A3sec2A 34sin2A4cos2A3=3sec2A4tan2A43sec2A 34sin2A4cos2A3=3(sec2Atan2A)tan2A13(sec2A1) \begin{aligned} & \dfrac{3-4{{\sin }^{2}}A}{4{{\cos }^{2}}A-3}=\dfrac{3{{\sec }^{2}}A-4{{\sec }^{2}}A{{\sin }^{2}}A}{4{{\sec }^{2}}A{{\cos }^{2}}A-3{{\sec }^{2}}A} \\\ & \Rightarrow \dfrac{3-4{{\sin }^{2}}A}{4{{\cos }^{2}}A-3}=\dfrac{3{{\sec }^{2}}A-4{{\tan }^{2}}A}{4-3{{\sec }^{2}}A} \\\ & \Rightarrow \dfrac{3-4{{\sin }^{2}}A}{4{{\cos }^{2}}A-3}=\dfrac{3\left( {{\sec }^{2}}A-{{\tan }^{2}}A \right)-{{\tan }^{2}}A}{1-3\left( {{\sec }^{2}}A-1 \right)} \\\ \end{aligned}
Now, we will write sec2Atan2A=1{{\sec }^{2}}A-{{\tan }^{2}}A=1 and sec2A1=tan2A{{\sec }^{2}}A-1={{\tan }^{2}}A in the above equation. Then,
34sin2A4cos2A3=3(sec2Atan2A)tan2A13(sec2A1) 34sin2A4cos2A3=3tan2A13tan2A \begin{aligned} & \dfrac{3-4{{\sin }^{2}}A}{4{{\cos }^{2}}A-3}=\dfrac{3\left( {{\sec }^{2}}A-{{\tan }^{2}}A \right)-{{\tan }^{2}}A}{1-3\left( {{\sec }^{2}}A-1 \right)} \\\ & \Rightarrow \dfrac{3-4{{\sin }^{2}}A}{4{{\cos }^{2}}A-3}=\dfrac{3-{{\tan }^{2}}A}{1-3{{\tan }^{2}}A} \\\ \end{aligned}