Solveeit Logo

Question

Question: If $S_n = \sum_{r=1}^{n}\sum_{t=0}^{r-1}(\frac{1}{6^n}{}^nC_r{}^rC_t4^t)$, then value of $\ell$ wher...

If Sn=r=1nt=0r1(16nnCrrCt4t)S_n = \sum_{r=1}^{n}\sum_{t=0}^{r-1}(\frac{1}{6^n}{}^nC_r{}^rC_t4^t), then value of \ell where =12n=1(1Sn)\ell = \frac{1}{2}\sum_{n=1}^{\infty}(1-S_n) is

Answer

5/2

Explanation

Solution

To find the value of \ell, we first need to simplify the expression for SnS_n.

Given: Sn=r=1nt=0r1(16nnCrrCt4t)S_n = \sum_{r=1}^{n}\sum_{t=0}^{r-1}(\frac{1}{6^n}{}^nC_r{}^rC_t4^t)

We can factor out 16n\frac{1}{6^n}: Sn=16nr=1nt=0r1nCrrCt4tS_n = \frac{1}{6^n}\sum_{r=1}^{n}\sum_{t=0}^{r-1}{}^nC_r{}^rC_t4^t

Let's evaluate the inner sum first: t=0r1rCt4t\sum_{t=0}^{r-1}{}^rC_t4^t. We know the binomial expansion formula: t=0rrCtxt=(1+x)r\sum_{t=0}^{r}{}^rC_t x^t = (1+x)^r. So, t=0r1rCt4t=(t=0rrCt4t)rCr4r\sum_{t=0}^{r-1}{}^rC_t4^t = \left(\sum_{t=0}^{r}{}^rC_t4^t\right) - {}^rC_r4^r. t=0r1rCt4t=(1+4)r14r=5r4r\sum_{t=0}^{r-1}{}^rC_t4^t = (1+4)^r - 1 \cdot 4^r = 5^r - 4^r. This simplification is valid for r1r \ge 1. Since the outer sum for rr starts from 11, this is applicable.

Now substitute this back into the expression for SnS_n: Sn=16nr=1nnCr(5r4r)S_n = \frac{1}{6^n}\sum_{r=1}^{n}{}^nC_r(5^r - 4^r) Sn=16n(r=1nnCr5rr=1nnCr4r)S_n = \frac{1}{6^n}\left(\sum_{r=1}^{n}{}^nC_r5^r - \sum_{r=1}^{n}{}^nC_r4^r\right)

Let's evaluate each sum separately using the binomial theorem k=0nnCkxk=(1+x)n\sum_{k=0}^{n}{}^nC_k x^k = (1+x)^n:

  1. r=1nnCr5r\sum_{r=1}^{n}{}^nC_r5^r: This sum is equal to (r=0nnCr5r)nC050\left(\sum_{r=0}^{n}{}^nC_r5^r\right) - {}^nC_05^0. r=1nnCr5r=(1+5)n11=6n1\sum_{r=1}^{n}{}^nC_r5^r = (1+5)^n - 1 \cdot 1 = 6^n - 1.

  2. r=1nnCr4r\sum_{r=1}^{n}{}^nC_r4^r: This sum is equal to (r=0nnCr4r)nC040\left(\sum_{r=0}^{n}{}^nC_r4^r\right) - {}^nC_04^0. r=1nnCr4r=(1+4)n11=5n1\sum_{r=1}^{n}{}^nC_r4^r = (1+4)^n - 1 \cdot 1 = 5^n - 1.

Substitute these back into the expression for SnS_n: Sn=16n((6n1)(5n1))S_n = \frac{1}{6^n}\left((6^n - 1) - (5^n - 1)\right) Sn=16n(6n15n+1)S_n = \frac{1}{6^n}(6^n - 1 - 5^n + 1) Sn=16n(6n5n)S_n = \frac{1}{6^n}(6^n - 5^n) Sn=15n6n=1(56)nS_n = 1 - \frac{5^n}{6^n} = 1 - \left(\frac{5}{6}\right)^n.

Now we need to find the value of =12n=1(1Sn)\ell = \frac{1}{2}\sum_{n=1}^{\infty}(1-S_n). First, calculate (1Sn)(1-S_n): 1Sn=1(1(56)n)=(56)n1 - S_n = 1 - \left(1 - \left(\frac{5}{6}\right)^n\right) = \left(\frac{5}{6}\right)^n.

Now substitute this into the expression for \ell: =12n=1(56)n\ell = \frac{1}{2}\sum_{n=1}^{\infty}\left(\frac{5}{6}\right)^n.

This is an infinite geometric series with the first term a=56a = \frac{5}{6} (for n=1n=1) and common ratio r=56r = \frac{5}{6}. The sum of an infinite geometric series n=1arn1\sum_{n=1}^{\infty} ar^{n-1} (or n=1arn\sum_{n=1}^{\infty} ar^n with appropriate aa) is first term1common ratio\frac{\text{first term}}{1-\text{common ratio}}, provided r<1|r|<1. Here, the first term is 56\frac{5}{6} and the common ratio is 56\frac{5}{6}. Since 56<1|\frac{5}{6}| < 1, the sum converges. n=1(56)n=56156=5616=5\sum_{n=1}^{\infty}\left(\frac{5}{6}\right)^n = \frac{\frac{5}{6}}{1 - \frac{5}{6}} = \frac{\frac{5}{6}}{\frac{1}{6}} = 5.

Finally, calculate \ell: =12×5=52\ell = \frac{1}{2} \times 5 = \frac{5}{2}.