Solveeit Logo

Question

Question: If $S_n = \sum_{r=1}^{n} r!$ then for $n > 6$ then $\sin^{-1} \left( \sin \left(S_n -7 \left[ \frac{...

If Sn=r=1nr!S_n = \sum_{r=1}^{n} r! then for n>6n > 6 then sin1(sin(Sn7[Sn7]))\sin^{-1} \left( \sin \left(S_n -7 \left[ \frac{S_n}{7} \right] \right) \right) is:

A

5 - 2\pi

B

2\pi - 5

C

6 - 2\pi

D

\pi - 4

Answer

5 - 2\pi

Explanation

Solution

The expression Sn7[Sn7]S_n - 7 \left[ \frac{S_n}{7} \right] represents the remainder when SnS_n is divided by 7. For n>6n > 6, any term r!r! where r7r \ge 7 is divisible by 7, meaning r!0(mod7)r! \equiv 0 \pmod{7}. Therefore, for n>6n > 6, Sn1!+2!+3!+4!+5!+6!(mod7)S_n \equiv 1! + 2! + 3! + 4! + 5! + 6! \pmod{7}.

Calculating the values modulo 7: 1!1(mod7)1! \equiv 1 \pmod{7} 2!2(mod7)2! \equiv 2 \pmod{7} 3!6(mod7)3! \equiv 6 \pmod{7} 4!=243(mod7)4! = 24 \equiv 3 \pmod{7} 5!=1201(mod7)5! = 120 \equiv 1 \pmod{7} 6!=7206(mod7)6! = 720 \equiv 6 \pmod{7}

Summing these remainders: Sn1+2+6+3+1+6=195(mod7)S_n \equiv 1 + 2 + 6 + 3 + 1 + 6 = 19 \equiv 5 \pmod{7}. So, the expression simplifies to sin1(sin(5))\sin^{-1}(\sin(5)).

The principal value range for sin1(x)\sin^{-1}(x) is [π2,π2][-\frac{\pi}{2}, \frac{\pi}{2}]. We need to find a value yy such that sin(y)=sin(5)\sin(y) = \sin(5) and y[π2,π2]y \in [-\frac{\pi}{2}, \frac{\pi}{2}]. We know that sin(x)=sin(x2kπ)\sin(x) = \sin(x - 2k\pi) for any integer kk. Let k=1k=1, then we consider 52π5 - 2\pi. Approximating π3.14159\pi \approx 3.14159, we get 2π6.283182\pi \approx 6.28318. So, 52π56.28318=1.283185 - 2\pi \approx 5 - 6.28318 = -1.28318. The range [π2,π2][-\frac{\pi}{2}, \frac{\pi}{2}] is approximately [1.5708,1.5708][-1.5708, 1.5708]. Since 1.5708<1.28318<1.5708-1.5708 < -1.28318 < 1.5708, the value 52π5 - 2\pi lies within the principal range. Therefore, sin1(sin(5))=52π\sin^{-1}(\sin(5)) = 5 - 2\pi.