Question
Question: If \(S_{n} = \sum_{r = 0}^{n}\frac{1}{n ⥂ C_{r}}\)and \(t_{n} = \sum_{r = 0}^{n}\frac{r}{nC_{r}}\). ...
If Sn=∑r=0nn⥂Cr1and tn=∑r=0nnCrr. Then Sntn is equal to
A
22n−1
B
21n−1
C
n−1
D
2n
Answer
2n
Explanation
Solution
Take n=2m, then, Sn=2mC01+2mC11+......+2mC2m1
=2[2mC01+2mC11+......+2mCm−11]+2m⥂Cm1
tn=∑r=0nn⥂Crr=∑r=02m2m⥂Crr=2mC11+2mC22+......+2mC2m2m
tn=(2mC11+2mC2m−12m−1)+(2mC22+2mC2m−22m−2)+......(2mCm−1m−1+2mCm+1m+1)+2mCmm+2mC2m2m
=2m[2mC11+2mC21+.....]+2mCmm+2m
=2m[2mC01+2mC11+...+2mCm−11]+2mCmm=m[Sn−2mCm1]+2mCmm=mSn
tn=mSn⇒Sntn=m=2n