Solveeit Logo

Question

Mathematics Question on Sets

If S(x)=(1+x)+2(1+x)2+3(1+x)3++60(1+x)60,x0,S(x) = (1 + x) + 2(1 + x)^2 + 3(1 + x)^3 + \ldots + 60(1 + x)^{60}, \, x \neq 0, and (60)2S(60)=a(b)b+b,(60)^2 S(60) = a(b)^b + b, where a,bNa, b \in \mathbb{N}, then (a+b)(a + b) is equal to ________.

Answer

Starting with the series:
S(x)=(1+x)+2(1+x)2+3(1+x)3++60(1+x)60S(x) = (1 + x) + 2(1 + x)^2 + 3(1 + x)^3 + \dots + 60(1 + x)^{60}
Multiplying both sides by (1+x)(1 + x), we get:
(1+x)S=(1+x)+2(1+x)2+3(1+x)3++60(1+x)61(1 + x)S = (1 + x) + 2(1 + x)^2 + 3(1 + x)^3 + \dots + 60(1 + x)^{61}
Now, subtracting SS from (1+x)S(1 + x)S, we obtain:
xS=(1+x)(1+x)601x60(1+x)61-xS = \frac{(1 + x)(1 + x)^{60} - 1}{x} - 60(1 + x)^{61}
Now, put x=60x = 60:
60S=61((61)601)6060(61)61-60S = \frac{61((61)^{60} - 1)}{60} - 60 \cdot (61)^{61}
Solving this equation gives:
S=3660S = 3660