Solveeit Logo

Question

Question: If \[{S_n} = \sum\limits_{r = 1}^n {\dfrac{{1 + 2 + {2^2} + \ldots \ldots {\rm{upto\, }}r\,{\rm{ ter...

If Sn=r=1n1+2+22+uptorterms2r{S_n} = \sum\limits_{r = 1}^n {\dfrac{{1 + 2 + {2^2} + \ldots \ldots {\rm{upto\, }}r\,{\rm{ terms}}}}{{{2^r}}}} , then Sn{S_n} is equal to
(a) 2n(n+1)2n - \left( {n + 1} \right)
(b) 112n1 - \dfrac{1}{{{2^n}}}
(c) n1+12nn - 1 + \dfrac{1}{{{2^n}}}
(d) 1+12n1 + \dfrac{1}{{{2^n}}}

Explanation

Solution

Here, we need to find the value of Sn{S_n}. We will use the formula for sum of nn terms of a geometric progression to simplify the given equation, and thus, find which of the given options is the correct value of Sn{S_n}. A geometric progression is a series of numbers in which each successive number is the product of the previous number and a fixed ratio.

Formula Used:
We will use the formula of the sum of nn terms of a G.P. is given by the formula a(Rn1)R1\dfrac{{a\left( {{R^n} - 1} \right)}}{{R - 1}}, where aa is the first term, RR is the common ratio, and nn is the number of terms of the G.P.

Complete step-by-step answer:
We will simplify the given equation Sn=r=1n1+2+22+uptorterms2r{S_n} = \sum\limits_{r = 1}^n {\dfrac{{1 + 2 + {2^2} + \ldots \ldots {\rm{upto\, }}r\,{\rm{ terms}}}}{{{2^r}}}} to find the value of Sn{S_n}.
The numerator of the expression is 1+2+22+uptorterms1 + 2 + {2^2} + \ldots \ldots {\rm{upto\, }}r\,{\rm{ terms}}.
Each successive term is equal to the product of 2, and the previous term.
Thus, we can observe that this series forms a geometric progression where the first term is 1, and the common ratio is 2.
Now, we will find the sum of this G.P. using a(Rn1)R1\dfrac{{a\left( {{R^n} - 1} \right)}}{{R - 1}}.
The first term of the G.P. is 1.
Thus, we get
a=1a = 1
The common ratio of the G.P. is 2.
Thus, we get
R=2R = 2
The number of terms in the G.P. is rr.
Thus, we get
n=rn = r
Substituting n=rn = r, R=2R = 2, and a=1a = 1 in the formula for sum of terms of a G.P., a(Rn1)R1\dfrac{{a\left( {{R^n} - 1} \right)}}{{R - 1}}, we get
1+2+22+uptorterms=1(2r1)21\Rightarrow 1 + 2 + {2^2} + \ldots \ldots {\rm{upto\, }}r\,{\rm{ terms}} = \dfrac{{1\left( {{2^r} - 1} \right)}}{{2 - 1}}
Simplifying the expression, we get
1+2+22+uptorterms=2r11 1+2+22+uptorterms=2r1\begin{array}{l} \Rightarrow 1 + 2 + {2^2} + \ldots \ldots {\rm{upto\, }}r\,{\rm{ terms}} = \dfrac{{{2^r} - 1}}{1}\\\ \Rightarrow 1 + 2 + {2^2} + \ldots \ldots {\rm{upto\, }}r\,{\rm{ terms}} = {2^r} - 1\end{array}
Substituting 1+2+22+uptorterms=2r11 + 2 + {2^2} + \ldots \ldots {\rm{upto\, }}r\,{\rm{ terms}} = {2^r} - 1 in the equation for the sum Sn=r=1n1+2+22+uptorterms2r{S_n} = \sum\limits_{r = 1}^n {\dfrac{{1 + 2 + {2^2} + \ldots \ldots {\rm{upto\, }}r\,{\rm{ terms}}}}{{{2^r}}}} , we get
Sn=r=1n2r12r\Rightarrow {S_n} = \sum\limits_{r = 1}^n {\dfrac{{{2^r} - 1}}{{{2^r}}}}
Rewriting the expression by splitting the L.C.M., we get
Sn=r=1n(2r2r12r)\Rightarrow {S_n} = \sum\limits_{r = 1}^n {\left( {\dfrac{{{2^r}}}{{{2^r}}} - \dfrac{1}{{{2^r}}}} \right)}
Simplifying the expression, we get
Sn=r=1n(112r)\Rightarrow {S_n} = \sum\limits_{r = 1}^n {\left( {1 - \dfrac{1}{{{2^r}}}} \right)}
We know that an expression of the form x=1n[f(x)g(x)]\sum\limits_{x = 1}^n {\left[ {f\left( x \right) - g\left( x \right)} \right]} can be written as x=1nf(x)x=1ng(x)\sum\limits_{x = 1}^n {f\left( x \right)} - \sum\limits_{x = 1}^n {g\left( x \right)} .
Therefore, rewriting the expression, we get
Sn=r=1n(1)r=1n(12r)\Rightarrow {S_n} = \sum\limits_{r = 1}^n {\left( 1 \right)} - \sum\limits_{r = 1}^n {\left( {\dfrac{1}{{{2^r}}}} \right)}
Expanding both the sums, we get
Sn=(1+1+1+uptonterms)(121+122+123+uptonterms)\Rightarrow {S_n} = \left( {1 + 1 + 1 + \ldots \ldots {\rm{upto\, }}n\,{\rm{ terms}}} \right) - \left( {\dfrac{1}{{{2^1}}} + \dfrac{1}{{{2^2}}} + \dfrac{1}{{{2^3}}} + \ldots \ldots {\rm{upto\, }}n\,{\rm{ terms}}} \right)
In the first time, 1 is added nn times. This repeated addition can be denoted as the product of 1 and nn.
Therefore, we get

\Rightarrow {S_n} = n - \left( {\dfrac{1}{2} + \dfrac{1}{{{2^2}}} + \dfrac{1}{{{2^3}}} + \ldots \ldots {\rm{upto\, }}n\,{\rm{ terms}}} \right)\end{array}$$ The second sum in the expression is $$\dfrac{1}{2} + \dfrac{1}{{{2^2}}} + \dfrac{1}{{{2^3}}} + \ldots \ldots {\rm{upto \,}}n\,{\rm{ terms}}$$. Each successive term is equal to the product of $$\dfrac{1}{2}$$, and the previous term. Thus, we can observe that this series forms a geometric progression where the first term is $$\dfrac{1}{2}$$, and the common ratio is $$\dfrac{1}{2}$$. Now, we will find the sum of this G.P. The first term of the G.P. is $$\dfrac{1}{2}$$. Thus, we get $$a = \dfrac{1}{2}$$ The common ratio of the G.P. is $$\dfrac{1}{2}$$. Thus, we get $$R = \dfrac{1}{2}$$ The number of terms in the G.P. is $$n$$. Substituting $$R = \dfrac{1}{2}$$ and $$a = \dfrac{1}{2}$$ in the formula for sum of terms of a G.P., we get $$ \Rightarrow \dfrac{1}{2} + \dfrac{1}{{{2^2}}} + \dfrac{1}{{{2^3}}} + \ldots \ldots {\rm{upto\, }}n\,{\rm{ terms}} = \dfrac{{\dfrac{1}{2}\left[ {{{\left( {\dfrac{1}{2}} \right)}^n} - 1} \right]}}{{\dfrac{1}{2} - 1}}$$ Simplifying the expression, we get $$\begin{array}{l} \Rightarrow \dfrac{1}{2} + \dfrac{1}{{{2^2}}} + \dfrac{1}{{{2^3}}} + \ldots \ldots {\rm{upto\, }}n\,{\rm{ terms}} = \dfrac{{\dfrac{1}{2}\left[ {{{\left( {\dfrac{1}{2}} \right)}^n} - 1} \right]}}{{ - \dfrac{1}{2}}}\\\ \Rightarrow \dfrac{1}{2} + \dfrac{1}{{{2^2}}} + \dfrac{1}{{{2^3}}} + \ldots \ldots {\rm{upto\, }}n\,{\rm{ terms}} = - \left[ {{{\left( {\dfrac{1}{2}} \right)}^n} - 1} \right]\\\ \Rightarrow \dfrac{1}{2} + \dfrac{1}{{{2^2}}} + \dfrac{1}{{{2^3}}} + \ldots \ldots {\rm{upto\, }}n\,{\rm{ terms}} = 1 - {\left( {\dfrac{1}{2}} \right)^n}\end{array}$$ An expression of the form $${\left( {\dfrac{a}{b}} \right)^m}$$ can be written as $$\dfrac{{{a^m}}}{{{b^m}}}$$. This is a rule of exponent. Using the rule of exponent to rewrite $${\left( {\dfrac{1}{2}} \right)^n}$$, we get $$ \Rightarrow \dfrac{1}{2} + \dfrac{1}{{{2^2}}} + \dfrac{1}{{{2^3}}} + \ldots \ldots {\rm{upto\, }}n\,{\rm{ terms}} = 1 - \dfrac{{{1^n}}}{{{2^n}}}$$ The number 1 raised to any real exponent is equal to 1. Therefore, we get $$ \Rightarrow \dfrac{1}{2} + \dfrac{1}{{{2^2}}} + \dfrac{1}{{{2^3}}} + \ldots \ldots {\rm{upto\, }}n\,{\rm{ terms}} = 1 - \dfrac{1}{{{2^n}}}$$ Finally, substituting $$\dfrac{1}{2} + \dfrac{1}{{{2^2}}} + \dfrac{1}{{{2^3}}} + \ldots \ldots {\rm{upto\, }}n\,{\rm{ terms}} = 1 - \dfrac{1}{{{2^n}}}$$ in the equation $${S_n} = n - \left( {\dfrac{1}{2} + \dfrac{1}{{{2^2}}} + \dfrac{1}{{{2^3}}} + \ldots \ldots {\rm{upto\, }}n\,{\rm{ terms}}} \right)$$, we get $$ \Rightarrow {S_n} = n - \left( {1 - \dfrac{1}{{{2^n}}}} \right)$$ Rewriting the expression, we get $$\therefore {{S}_{n}}=n-1+\dfrac{1}{{{2}^{n}}}$$ Therefore, the sum $${S_n}$$ is equal to $$n - 1 + \dfrac{1}{{{2^n}}}$$. **Thus, the correct option is option (c).** **Note:** In geometric progression, consecutive numbers differ by a fixed ratio and this fixed ratio is called the common ratio. A common mistake is to use the formula for the sum of a geometric progression with infinite terms, that is $$\dfrac{a}{{1 - R}}$$. This is incorrect since it is given that the sum extends up to $$r$$ or $$n$$ terms, and thus, has a finite number of terms.