Solveeit Logo

Question

Question: If \( S_n=^nC_0.^nC_1+^nC_1.^nC_2+....+^nC_{n-1}.^nC_n\;and\;\dfrac{S_{n+1}}{S_n}=\dfrac{15}4,\; \) ...

If Sn=nC0.nC1+nC1.nC2+....+nCn1.nCn  and  Sn+1Sn=154,  S_n=^nC_0.^nC_1+^nC_1.^nC_2+....+^nC_{n-1}.^nC_n\;and\;\dfrac{S_{n+1}}{S_n}=\dfrac{15}4,\; then n is
A.8
B.6
C.4
D.16

Explanation

Solution

Hint : One should have the knowledge of binomial theorem to solve this problem. Some basic formula are given below , we make use of this formulae to solve the question.
\begin{aligned} & ^n{C_r} = \dfrac{{n!}}{{\left( {n - r} \right)!r!}}...\left( 1 \right) \\\ &{\left( {1 + x} \right)^n}{ = ^n}{C_0}{.1^n}.{x^0}{ + ^n}{C_1}{.1^{n - 1}}.{x^1} + {....^n}{C_n}{.1^0}.{x^n}\;\;\;\;...\left( 2 \right) \\\ &= \mathop \sum \limits_{r = 0}^n {}_{}^nC_r^{}{.1^{n - r}}.{x^r} \\\ \end{aligned}

Complete step-by-step answer :
The given summation SnS_n is a sum of products of the terms of two different series. So, we will find these series and express SnS_n in terms of that series-

By equation (2), we can write that-
(1+x)n=nC0.1n.x0+nC1.1n1.x1+....nCn.10.xn(1+x)n=nC0+nC1.x+nC2.x2....nCn.xn\Also,  when  we  replace  x  by  1x(1+1x)n=nC0.1n.1x0+nC1.1n1.1x1+....nCn.10.1xn(1+1x)n=nC0+nC1.1x+nC2.1x2....nCn.1xn\left(1+x\right)^n=^nC_0.1^n.x^0+^nC_1.1^{n-1}.x^1+....^nC_n.1^0.x^n\\\\\left(1+x\right)^n=^nC_0+^nC_1.x+^nC_2.x^2....^nC_n.x^n\\\Also,\;when\;we\;replace\;x\;by\;\dfrac1x\\\\\left(1+\dfrac1x\right)^n=^nC_0.1^n.\dfrac1{x^0}+^nC_1.1^{n-1}.\dfrac1{x^1}+....^nC_n.1^0.\dfrac1{x^n}\\\\\left(1+\dfrac1x\right)^n=^nC_0+^nC_1.\dfrac1x+^nC_2.\dfrac1{x^2}....^nC_n.\dfrac1{x^n}

On multiplying these two binomial series, we can write that-
\left(1+\mathrm x\right)^{\mathrm n}\left(1+\dfrac1{\mathrm x}\right)^{\mathrm n}=\left({}^{\mathrm n}{\mathrm C}_0+^{\mathrm n}{\mathrm C}_1.\mathrm x+^{\mathrm n}{\mathrm C}_2.\mathrm x^2....^{\mathrm n}{\mathrm C}_{\mathrm n}.\mathrm x^{\mathrm n}\right)\left({}^{\mathrm n}{\mathrm C}_0+^{\mathrm n}{\mathrm C}_1.\dfrac1{\mathrm x}+^{\mathrm n}{\mathrm C}_2.\dfrac1{\mathrm x^2}....^{\mathrm n}{\mathrm C}_{\mathrm n}.\dfrac1{\mathrm x^{\mathrm n}}\right)\\\
When we look at the series closely, the coefficients of x in the product are the same as SnS_n . The second term in the first series multiplies with the first term in the second series to give x. Similarly, the third term in the first series multiplies with the second term in the second series and so on. If we look at the coefficients, they are the same as SnS_n .

SnS_n = coefficient of x in (1+x)n(1+1x)n\left(1+x\right)^n\left(1+\dfrac1x\right)^n

SnS_n = coefficient of x in (1+x)2nxn(By  multiplying  within  the  brackets)\dfrac{\left(1+\mathrm x\right)^{2\mathrm n}}{\mathrm x^{\mathrm n}}\left(\mathrm{By}\;\mathrm{multiplying}\;\mathrm{within}\;\mathrm{the}\;\mathrm{brackets}\right)

SnS_n = coefficient of xn+1x^{n+1} in (1+x)2n(1 + x)^{2n} (By multiplying both sides by xnx^n )

The formula for nthn^{th} term in binomial expression is given by-
{}^{\mathrm n}{\mathrm C}_{\mathrm r}.1^{\mathrm n-\mathrm r}\mathrm x^{\mathrm r}\\\\\mathrm{So},\;\\\\\mathrm{Coefficient}\;\mathrm{of}\;\mathrm x^{\mathrm n+1}=^{2\mathrm n}{\mathrm C}_{\mathrm n+1}.1^{2\mathrm n-\left(\mathrm n+1\right)}\mathrm x^{\mathrm n+1}\\\=^{2\mathrm n}{\mathrm C}_{\mathrm n+1}
So, we can write that-
{\mathrm S}_{\mathrm n}=^{2\mathrm n}{\mathrm C}_{\mathrm n+1}=\dfrac{\left(2\mathrm n\right)!}{\left(\mathrm n-1\right)!\left(\mathrm n+1\right)!}\\\\{\mathrm S}_{\mathrm n+1}=^{2\mathrm n+2}{\mathrm C}_{\mathrm n+2}=\dfrac{\left(2\mathrm n+2\right)!}{\left(\mathrm n\right)!\left(\mathrm n+2\right)!}\\\
We have been given the ratio of Sn+1S_{n+1} and SnS_n , so we can equate that with these values to find the value of n.
Sn+1Sn=154=((2n+2)!n!(n+2)!)((2n)!(n1)!(n+1)!)\dfrac{{{S_{n + 1}}}}{{{S_n}}} = \dfrac{{15}}{4} = \dfrac{{\left( {\dfrac{{(2n + 2)!}}{{n!(n + 2)!}}} \right)}}{{\left( {\dfrac{{(2n)!}}{{(n - 1)!(n + 1)!}}} \right)}}
154=(1.2.3...(2n)(2n+1)(2n+2)[1.2.3...(n1)n][1.2.3...(n+1)(n+2)])(1.2.3...(2n)[1.2.3...(n1)][1.2.3...(n+1)])\dfrac{{15}}{4} = \dfrac{{\left( {\dfrac{{1.2.3...(2n)(2n + 1)(2n + 2)}}{{[1.2.3...(n - 1)n][1.2.3...(n + 1)(n + 2)]}}} \right)}}{{\left( {\dfrac{{1.2.3...(2n)}}{{[1.2.3...(n - 1)][1.2.3...(n + 1)]}}} \right)}}
We can cancel out the factorials correspondingly as-
(2n+1)(2n+2)n(n+2)=154\dfrac{{(2n + 1)(2n + 2)}}{{n(n + 2)}} = \dfrac{{15}}{4}
4(4n2+4n+2n+2)=15(n2+2n)4(4{n^2} + 4n + 2n + 2) = 15({n^2} + 2n)
16n2+24n+8=15n2+30n16{n^2} + 24n + 8 = 15{n^2} + 30n
n26n+8=0{n^2} - 6n + 8 = 0
n24n2n+8=0{n^2} - 4n - 2n + 8 = 0
n(n - 4) - 2(n - 4) = 0
(n - 4)(n - 2) = 0
n = 2, 4
2 is not in the options, so the correct answer is C. 4

Note : These problems require a deep understanding of binomial expressions and expansion. This is because we have to analyze the expression to write SnS_n in terms of n. After we do this, we can solve the problem easily with simple calculations.