Question
Mathematics Question on Sequence and series
If Sn denotes the sum of first n terms of A.P. , such that SnSm=n2m2, then anam is equal to
A
2n+12m+1
B
2n−12m−1
C
n−1m−1
D
n+1m+1
Answer
2n−12m−1
Explanation
Solution
Let a and d be the first term and common difference of an AP respectively, then,
Sm=2m[2a+(m−1)d] and Sn=2n[2a+(n−1)d]
Given, SnSm=n2m2
⇒ 2n2a+(n−1)d2m2a+(m−1)d=n2m2
⇒ 2a+(n−1)d2a+(m−1)d=nm
⇒ 2an+(mn−n)d=2am+(mn−m)d
⇒ 2a(n−m)+(mn−n−mn+m)d=0
⇒ 2a(n−m)+(m−n)d=0
⇒ (m−n)(d−2a)=0
⇒ d=2a ..(iii)
(∵m=n) Now, anam=a+(n−1)da+(m−1)d=a+(n−1)2aa+(m−1)2a
=a(2+2n−2)a(1+2m−2)=2n−12m−1