Solveeit Logo

Question

Mathematics Question on Sequence and series

If Sn{{S}_{n}} denotes the sum of first nn terms of A.P.A.P. ,, such that SmSn=m2n2,\frac{{{S}_{m}}}{{{S}_{n}}}=\frac{{{m}^{2}}}{{{n}^{2}}}, then aman\frac{{{a}_{m}}}{{{a}_{n}}} is equal to

A

2m+12n+1\frac{2m+1}{2n+1}

B

2m12n1\frac{2m-1}{2n-1}

C

m1n1\frac{m-1}{n-1}

D

m+1n+1\frac{m+1}{n+1}

Answer

2m12n1\frac{2m-1}{2n-1}

Explanation

Solution

Let a and d be the first term and common difference of an AP respectively, then,
Sm=m2[2a+(m1)d]{{S}_{m}}=\frac{m}{2}[2a+(m-1)d] and Sn=n2[2a+(n1)d]{{S}_{n}}=\frac{n}{2}[2a+(n-1)d]
Given, SmSn=m2n2\frac{{{S}_{m}}}{{{S}_{n}}}=\frac{{{m}^{2}}}{{{n}^{2}}}
\Rightarrow m22a+(m1)dn22a+(n1)d=m2n2\frac{\frac{m}{2}\\{2a+(m-1)d\\}}{\frac{n}{2}\\{2a+(n-1)d\\}}=\frac{{{m}^{2}}}{{{n}^{2}}}
\Rightarrow 2a+(m1)d2a+(n1)d=mn\frac{2a+(m-1)d}{2a+(n-1)d}=\frac{m}{n}
\Rightarrow 2an+(mnn)d=2am+(mnm)d2an+(mn-n)d=2am+(mn-m)d
\Rightarrow 2a(nm)+(mnnmn+m)d=02a(n-m)+(mn-n-mn+m)d=0
\Rightarrow 2a(nm)+(mn)d=02a(n-m)+(m-n)d=0
\Rightarrow (mn)(d2a)=0(m-n)(d-2a)=0
\Rightarrow d=2ad=2a ..(iii)
(mn)(\because \,\,\,\,m\ne n) Now, aman=a+(m1)da+(n1)d=a+(m1)2aa+(n1)2a\frac{{{a}_{m}}}{{{a}_{n}}}=\frac{a+(m-1)d}{a+(n-1)d}=\frac{a+(m-1)2a}{a+(n-1)2a}
=a(1+2m2)a(2+2n2)=2m12n1=\frac{a(1+2m-2)}{a(2+2n-2)}=\frac{2m-1}{2n-1}