Solveeit Logo

Question

Mathematics Question on Sequence and series

If S is the sum to infinity of a G.P. whose first term is a, then the sum of the first n terms is

A

S(1aS)nS\left(1-\frac{a}{S}\right)^n

B

S[1(1aS)]nS\left[1-\left(1-\frac{a}{S}\right)\right]^n

C

a[1(1aS)n]a\left[1-\left(1-\frac{a}{S}\right)^n\right]

D

none of these

Answer

S[1(1aS)]nS\left[1-\left(1-\frac{a}{S}\right)\right]^n

Explanation

Solution

If rr is the common ratio of the G.PG.P. then S=a1rS= \frac{a}{1-r} 1r=aS\Rightarrow 1-r=\frac{a}{S} r=1aS\Rightarrow r=1-\frac{a}{S} Now Sn=a(1rn)1rS_{n} = \frac{a\left(1-r^{n}\right)}{1-r} =aaS[1(1aS)n]= \frac{a}{\frac{a}{S}}\left[1-\left(1-\frac{a}{S}\right)^{n}\right] =S[1(1aS)n]=S \left[1-\left(1 - \frac{a}{S}\right)^{n} \right]