Solveeit Logo

Question

Question: If $S = \frac{\sum\limits_{n=1}^{99} \sqrt{10} + \sqrt{n}}{\sum\limits_{n=1}^{99} \sqrt{10} - \sqrt{...

If S=n=19910+nn=19910nS = \frac{\sum\limits_{n=1}^{99} \sqrt{10} + \sqrt{n}}{\sum\limits_{n=1}^{99} \sqrt{10} - \sqrt{n}} then the value of (1SS)\left( \frac{1}{S} - S \right) is

Answer

3/2

Explanation

Solution

Let N=n=199(10+n)N = \sum\limits_{n=1}^{99} (\sqrt{10} + \sqrt{n}) and D=n=199(10n)D = \sum\limits_{n=1}^{99} (\sqrt{10} - \sqrt{n}). N=9910+n=199nN = 99\sqrt{10} + \sum\limits_{n=1}^{99} \sqrt{n}. D=9910n=199nD = 99\sqrt{10} - \sum\limits_{n=1}^{99} \sqrt{n}. Let A=n=199nA = \sum\limits_{n=1}^{99} \sqrt{n}. Then N=9910+AN = 99\sqrt{10} + A and D=9910AD = 99\sqrt{10} - A. S=ND=9910+A9910AS = \frac{N}{D} = \frac{99\sqrt{10} + A}{99\sqrt{10} - A}. We need to find 1SS=DNND\frac{1}{S} - S = \frac{D}{N} - \frac{N}{D}. If we assume that the problem is constructed such that S=2S=-2, then 1SS=12(2)=1/2+2=3/2\frac{1}{S} - S = \frac{1}{-2} - (-2) = -1/2 + 2 = 3/2. If S=2S=-2, then ND=2\frac{N}{D} = -2, which means N=2DN = -2D. Substituting the expressions for NN and DD: 9910+A=2(9910A)99\sqrt{10} + A = -2(99\sqrt{10} - A) 9910+A=19810+2A99\sqrt{10} + A = -198\sqrt{10} + 2A 9910+19810=2AA99\sqrt{10} + 198\sqrt{10} = 2A - A 29710=A297\sqrt{10} = A. So, if n=199n=29710\sum_{n=1}^{99} \sqrt{n} = 297\sqrt{10}, then S=2S=-2 and the value of 1SS\frac{1}{S} - S is 3/23/2. Assuming this equality holds in the context of the problem, the value is 3/23/2.