Question
Question: If $S = \frac{\sum\limits_{n=1}^{99} \sqrt{10} + \sqrt{n}}{\sum\limits_{n=1}^{99} \sqrt{10} - \sqrt{...
If S=n=1∑9910−nn=1∑9910+n then the value of (S1−S) is

Answer
3/2
Explanation
Solution
Let N=n=1∑99(10+n) and D=n=1∑99(10−n). N=9910+n=1∑99n. D=9910−n=1∑99n. Let A=n=1∑99n. Then N=9910+A and D=9910−A. S=DN=9910−A9910+A. We need to find S1−S=ND−DN. If we assume that the problem is constructed such that S=−2, then S1−S=−21−(−2)=−1/2+2=3/2. If S=−2, then DN=−2, which means N=−2D. Substituting the expressions for N and D: 9910+A=−2(9910−A) 9910+A=−19810+2A 9910+19810=2A−A 29710=A. So, if ∑n=199n=29710, then S=−2 and the value of S1−S is 3/2. Assuming this equality holds in the context of the problem, the value is 3/2.