Solveeit Logo

Question

Question: If S denotes the sum of infinity and \[{S_n}\] the sum of n terms of the series. \(1+\dfrac{1}{2}+...

If S denotes the sum of infinity and Sn{S_n} the sum of n terms of the series.
1+12+14+18+....,1+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+...., such that SSn<11000,\text{S}-{{\text{S}}_{\text{n}}}<\dfrac{1}{1000}, then show that least value of n is 11.

Explanation

Solution

We know that. Sum of infinite G.P.
S=a1r,\text{S}=\dfrac{a}{1-\text{r}}, where, a = first term of G.P
r = common ratio of infinite G.P.
and sum of n terms of series,
Sn=a(1rn)1r,{{\text{S}}_{n}}=\dfrac{a\left( 1-{{r}^{n}} \right)}{1-r}, where a = first term of G.P
r = r\ \text{=}\ common ration
n = n\ =\ terms of series.
Using given series find the difference of S and Sn{S_n}, then using given inequality show n11n \ge 11

Complete step by step solution:
Given series,
1+12+14+18+......1+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+......
Now,
We know that,
Sum of infinite G.P,S=a1r\text{S}=\dfrac{a}{1-r}--------(A)
Where, a=a= first term of G.P.
r =r\ = common ratio of finite G.P
Given that from the series.
a=1a=1
r=12r={\scriptstyle\dfrac{1}{2}}
Now,
S=1112\text{S}=\dfrac{1}{1-{\scriptstyle\dfrac{-1}{2}}}
S=1212\Rightarrow \text{S}=\dfrac{1}{\dfrac{2-1}{2}}
S = 112\Rightarrow \text{S}\ \text{=}\ \dfrac{1}{{\scriptstyle\dfrac{1}{2}}}
S = 2.\Rightarrow \text{S}\ \text{=}\ \text{2}\text{.} ---------(1)
Now,
We also know that,
Sum of nn terms of series, Sn=a(1rn)1r{{\text{S}}_{n}}=\dfrac{a\left( 1-{{r}^{n}} \right)}{1-r} -----(B)
Where, a=a= first term of series
r = r\ =\ common rat 20.
n=n= terms of series.
Given that from the series.
a=1a=1
r = 1/2,r\ =\ {\scriptstyle{}^{1}/{}_{2,}}
From equation (B).
Sn=1(1(12)n)112{{\text{S}}_{n}}=\dfrac{1\left( 1-{{\left( {\scriptstyle\dfrac{1}{2}} \right)}^{n}} \right)}{1-{\scriptstyle\dfrac{1}{2}}}
Sn=1(12)n12\Rightarrow {{\text{S}}_{n}}=\dfrac{1-{{\left( {\scriptstyle\dfrac{1}{2}} \right)}^{n}}}{\dfrac{1}{2}}
Sn=[1(12)n]2\Rightarrow {{\text{S}}_{n}}=\left[ 1-{{\left( {\scriptstyle\dfrac{1}{2}} \right)}^{n}} \right]2
Sn=2(12)n.2\Rightarrow {{\text{S}}_{n}}=2-{{\left( \dfrac{1}{2} \right)}^{n}}.2 ((1x)n=xn)\left( \therefore {{\left( \dfrac{1}{x} \right)}^{n}}={{x}^{-n}} \right)
Sn=22n.2\Rightarrow {{\text{S}}_{n}}=2-{{2}^{-n}}.2
Sn=22n+1\Rightarrow {{\text{S}}_{n}}=2-{{2}^{-n+1}}
Sn=212n1\Rightarrow {{\text{S}}_{n}}=2-\dfrac{1}{{{2}^{n-1}}}----------(2)
According to question
From equation (1) and (2).
S-Sn<11000\text{S-}{{\text{S}}_{n}}<\dfrac{1}{1000}
2(212n1)<12000\Rightarrow 2-\left( 2-\dfrac{1}{{{2}^{n-1}}} \right)<\dfrac{1}{2000}
22+12n1<12000\Rightarrow 2-2+\dfrac{1}{{{2}^{n-1}}}<\dfrac{1}{2000}
1221<11000\Rightarrow \dfrac{1}{{{2}^{2-1}}}<\dfrac{1}{1000}
-we know that when 1x<1y\dfrac{1}{x}<\dfrac{1}{y} then, x>yx>y
So,
12n1<11000\Rightarrow \dfrac{1}{{{2}^{n-1}}}<\dfrac{1}{1000}
2n11000\Rightarrow {{2}^{n-1}}\ge 1000
Now
210=32×32=1024.{{2}^{10}}=32\times 32=1024.
 n110 or n11.\therefore \ n-1\ge 10\ \text{or}\ \text{n}\ge \text{11}\text{.}

Hence, the least value is 11.

Note:
When the ratio of preceding term and succeeding term is common then the series is called geometric progression (G.P). The sum of infinite Geometric Progression is possible if and only if r<1|r|<1 then only sequence will be convergent otherwise it’ll be divergent.