Solveeit Logo

Question

Question: If \(S = cos^{2}\frac{\pi}{n} + cos^{2}\frac{2\pi}{n} + \ldots\ldots\ldots\ldots\ldots + cos^{2}\fra...

If S=cos2πn+cos22πn++cos2(n1)πn,S = cos^{2}\frac{\pi}{n} + cos^{2}\frac{2\pi}{n} + \ldots\ldots\ldots\ldots\ldots + cos^{2}\frac{(n - 1)\pi}{n}, then S equals

A

n2(n+1)\frac{n}{2}(n + 1)

B

12(n1)\frac{1}{2}(n - 1)

C

12(n2)\frac{1}{2}(n - 2)

D

n2\frac{n}{2}

Answer

12(n2)\frac{1}{2}(n - 2)

Explanation

Solution

12[1+cos2πn+1+cos4πn+1+cos6πn++1+cos2(n1)πn]\frac{1}{2}\left\lbrack 1 + \cos\frac{2\pi}{n} + 1 + \cos\frac{4\pi}{n} + 1 + \cos\frac{6\pi}{n} + \ldots + 1 + \cos 2(n - 1)\frac{\pi}{n} \right\rbrack=12[n1+k=1n12kπncos[]]\frac{1}{2}\left\lbrack n - 1 + \sum_{k = 1}^{n - 1\sum\frac{2k\pi}{n}}\cos\lbrack\rbrack \right\rbrack= 12[n11]=12(n2)\frac{1}{2}\lbrack n - 1 - 1\rbrack = \frac{1}{2}(n - 2)