Solveeit Logo

Question

Mathematics Question on Functions

If S=aR:2a1=3[a]+2aS = \\{ a \in \mathbb{R} : |2a - 1| = 3[a] + 2\\{a\\} \\}, where [t][t] denotes the greatest integer less than or equal to tt and t\\{t\\} represents the fractional part of tt, then 72aSa72 \sum_{a \in S} a is equal to _________.

Answer

Given:

2a1=3[a]+2a|2a - 1| = 3[a] + 2\\{a\\}

Rewrite 2a1|2a - 1| in two forms depending on the value of aa:

In this case:

2a1=[a]+2a2a - 1 = [a] + 2a

Since [a]=1[a] = -1, we find that a[1,0)a \in [-1, 0), which is a contradiction because a>12a > \frac{1}{2}. Therefore, this case is rejected.

Case 2: a<12a < \frac{1}{2} In this case:

2a+1=[a]+2a-2a + 1 = [a] + 2a

Let a=I+fa = I + f where II is the integer part and ff is the fractional part, so [a]=0[a] = 0 and a=f\\{a\\} = f.

Then we have:

2(I+f)+1=I+2f-2(I + f) + 1 = I + 2f

Substituting I=0I = 0, we get:

1=2f    f=141 = 2f \implies f = \frac{1}{4}

Thus, a=14a = \frac{1}{4}.

Now, calculating 72aSa72 \sum_{a \in S} a: 72×14=1872 \times \frac{1}{4} = 18