Solveeit Logo

Question

Question: If \(S _ { k }\) denotes the sum of first \(k\)terms of an arithmetic progression whose first term...

If SkS _ { k } denotes the sum of first kkterms of an arithmetic progression whose first term and common difference are aa and respectively, then Skn/SnS _ { k n } / S _ { n } be independent of nn if.

A

2ad=02 a - d = 0

B

ad=0a - d = 0

C

a2d=0a - 2 d = 0

D

None of these

Answer

2ad=02 a - d = 0

Explanation

Solution

SknSn=(kn/2){2a+(kn1)d}(n/2){2a+(n1)d}=k{(2ad)+knd(2ad)+nd}\frac { S _ { k n } } { S _ { n } } = \frac { ( k n / 2 ) \{ 2 a + ( k n - 1 ) d \} } { ( n / 2 ) \{ 2 a + ( n - 1 ) d \} } = k \left\{ \frac { ( 2 a - d ) + k n d } { ( 2 a - d ) + n d } \right\}

i.e. if 2ad=02 a - d = 0, then this becomes k2ndnd=k2\frac { k ^ { 2 } n d } { n d } = k ^ { 2 } which is obviously independent of nn.