Solveeit Logo

Question

Question: If\[s=1+t{{e}^{s}}\], then find the value of \[\dfrac{{{d}^{2}}s}{d{{t}^{2}}}\]...

Ifs=1+tess=1+t{{e}^{s}}, then find the value of d2sdt2\dfrac{{{d}^{2}}s}{d{{t}^{2}}}

Explanation

Solution

Hint: Directly apply the derivative and apply necessary rules of differentiation. And the given expression should be derived with respect to t't' and not x'x' or y'y'.

Complete step by step answer:
The given expression is
s=1+tess=1+t{{e}^{s}}
Now we will find the first order derivative of the given expression, so we will differentiate the given expression with respect to t't', we get
dsdt=ddt(1+tes)\dfrac{ds}{dt}=\dfrac{d}{dt}\left( 1+t{{e}^{s}} \right)
Now we will apply the the sum rule of differentiation, i.e., differentiation of sum of two functions is same as the sum of individual differentiation of the functions, i.e., ddx(u+v)=dx(u)+dx(v)\dfrac{d}{dx}(u+v)=\dfrac{d}{x}(u)+\dfrac{d}{x}(v) . Applying this formula in the above equation, we get
dsdt=ddt(1)+ddt(tes)\dfrac{ds}{dt}=\dfrac{d}{dt}\left( 1 \right)+\dfrac{d}{dt}\left( t{{e}^{s}} \right)
We know the derivation of constant term is zero, so we get
dsdt=0+ddt(tes)\dfrac{ds}{dt}=0+\dfrac{d}{dt}\left( t{{e}^{s}} \right)
We know the product rule as, ddx(uv)=uddxv+vddxu\dfrac{d}{dx}\left( u\cdot v \right)=u\dfrac{d}{dx}v+v\dfrac{d}{dx}u, applying this formula in the above equation, we get
dsdt=tddt(es)+esddt(t)\dfrac{ds}{dt}=t\dfrac{d}{dt}\left( {{e}^{s}} \right)+{{e}^{s}}\dfrac{d}{dt}\left( t \right)
We know differentiation of exponential is, ddx(eu)=eu.ddx(u)\dfrac{d}{dx}\left( {{e}^{u}} \right)={{e}^{u}}.\dfrac{d}{dx}(u), so the above equation becomes,
dsdt=tesddt(s)+es(1)\dfrac{ds}{dt}=t{{e}^{s}}\dfrac{d}{dt}\left( s \right)+{{e}^{s}}(1)
Bringing the same terms on one side, we get
dsdt(1tes)=es..........(i)\dfrac{ds}{dt}(1-t{{e}^{s}})={{e}^{s}}..........(i)
Consider the given expression,

& s=1+t{{e}^{s}} \\\ & \Rightarrow t{{e}^{s}}=s-1.........(ii) \\\ \end{aligned}$$ Substituting value from equation (ii) into equation (i), we get $$\begin{aligned} & \Rightarrow \dfrac{ds}{dt}\left( 1-(s-1) \right)={{e}^{s}} \\\ & \Rightarrow \dfrac{ds}{dt}\left( 2-s \right)={{e}^{s}} \\\ \end{aligned}$$ $$\Rightarrow \dfrac{ds}{dt}=\dfrac{{{e}^{s}}}{\left( 2-s \right)}.........(iii)$$ Now we will find the second order derivative. For that we will again differentiate the above expression with respect to $'t'$ , we get $$\Rightarrow \dfrac{d}{dt}\left( \dfrac{ds}{dt} \right)=\dfrac{d}{dt}\left( \dfrac{{{e}^{s}}}{\left( 2-s \right)} \right)$$ Now we know the quotient rule, i.e., $$\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\dfrac{d}{dx}u-u\dfrac{d}{dx}v}{{{v}^{2}}}$$, applying this formula in the above equation, we get $$\Rightarrow \dfrac{{{d}^{2}}s}{d{{t}^{2}}}=\left( \dfrac{\left( 2-s \right)\dfrac{d}{dt}\left( {{e}^{s}} \right)-{{e}^{s}}\dfrac{d}{dt}\left( 2-s \right)}{{{\left( 2-s \right)}^{2}}} \right)$$ Applying the rules which are already mentioned above, we get $$\Rightarrow \dfrac{{{d}^{2}}s}{d{{t}^{2}}}=\left( \dfrac{\left( 2-s \right){{e}^{s}}\dfrac{ds}{dt}+{{e}^{s}}\dfrac{ds}{dt}}{{{\left( 2-s \right)}^{2}}} \right)$$ Taking out the common term, we get $$\Rightarrow \dfrac{{{d}^{2}}s}{d{{t}^{2}}}=\left( \dfrac{{{e}^{s}}\dfrac{ds}{dt}(2-s+1)}{{{\left( 2-s \right)}^{2}}} \right)$$ Now substituting value from equation (iii), we get $$\Rightarrow \dfrac{{{d}^{2}}s}{d{{t}^{2}}}=\left( \dfrac{{{e}^{s}}\left( \dfrac{{{e}^{s}}}{\left( 2-s \right)} \right)(3-s)}{{{\left( 2-s \right)}^{2}}} \right)$$ $$\Rightarrow \dfrac{{{d}^{2}}s}{d{{t}^{2}}}=\left( \dfrac{{{\left( {{e}^{s}} \right)}^{2}}(3-s)}{{{\left( 2-s \right)}^{3}}} \right)$$ This is the required answer. Note: We know derivate of $${{e}^{x}}={{e}^{x}}$$, but this is with respect to $'x'$ , if the derivative is with respect to any other variable, then we cannot assume this, we should use the formula$\dfrac{d}{dx}\left( {{e}^{u}} \right)={{e}^{u}}.\dfrac{d}{dx}(u)$. Whenever deriving we should pay attention to the variable it is being derived with respect to. As in this problem see the simple expression students will derive with respect to $'x'$instead of $'y'$ and will get an incorrect answer.