Solveeit Logo

Question

Mathematics Question on Binomial theorem

If rth and (r + 1)th terms in the expansion of (p+q)n(p + q)^n are equal, then (n+1)qr(p+q)\frac {(n+1)q} {r(p+q)} is

A

0

B

1

C

44565

D

44563

Answer

1

Explanation

Solution

Given, (p+q)n(p +q)^{n}
Tr=T(r1)+1=nCr1pnr+1qr1T_{r}=T_{(r-1)+1}={ }^{n} C_{r-1} p^{n-r+1} \cdot q^{r-1}
and Tr+1=nCrpnrqrT_{r+1}={ }^{n} C_{r} p^{n-r} \cdot q^{r}
From question,
nCr1pnr+1qr1=nCrpnrqr{ }^{n} C_{r-1} p^{n-r+1} \cdot q^{r-1}={ }^{n} C_{r} p^{n-r} \cdot q^{r}
n!(r1)!(nr+1)(nr)!pnrqrpq\frac{n !}{(r-1) !(n-r+1)(n-r) !} \cdot p^{n-r} q^{r} \cdot \frac{p}{q}
=n!r(r1)!(nr)!pnrqr=\frac{n !}{r(r-1) !(n-r) !} \cdot p^{n-r} \cdot q^{r}
1(nr+1)pq=1r\Rightarrow \frac{1}{(n-r+1)} \cdot \frac{p}{q}=\frac{1}{r}
pr=qnqr+q\Rightarrow p r=q n-q r+q
q(n+1)r(p+q)=1\Rightarrow \frac{q(n+1)}{r(p+q)}=1